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This issue of Expressions will be practically coincident with the
10th World Congress on Computational Mechanics organized
by the IACM in the city of Sao Paulo on 8-13 July 2012.
Previous editions of this global event took place in Austin (1980),
Stuttgart (1990), Tokyo (1994), Buenos Aires (1998), Vienna
(2002), Beijing (2004), Los Angeles (2006), Venice (2008)

and Sydney (2010). Some 2000 participants will participate in
WCCM X in Sao Paulo.

On behalf of the IACM | thank the effort of the organizers of the
Sao Paulo congress, and in particular the involvement of Prof.
Paulo Pimenta as Chairman of the congress and his co-workers
for making of WCCM X another successful IACM event.

WCCM XI will take place in Barcelona, on July 20-25 2014

in conjunction with two major ECCOMAS conferences:

the 5th European Conference on Computational Mechanics
(ECCM V) and the 6th European Conference on Computational
Fluid Dynamics (ECFD VI).

World congresses on Computational Mechanics are the

major events organized by the IACM. They aim to gathering
researchers, developers and practitioners in the broad field of
computational methods in engineering and applied sciences.
The participation in the WCCMs has progressively increased
from some 500 participants in the first meeting in Austin to the
2000 participants in Sao Paulo, with a peak of 3000 participants
in WCCM VIl in Venice in 2008.

The support and involvement of the international computational
mechanics community to WCCMs is a sign of the vitality of

the field. This is nowadays more apparent when we are facing
a deep economic crisis thataffects all. countries in the world;
directly or indirectly.

The topics covered in the WCCMs have also evolved. The
traditional areas in computational solid and fluid mechanics
have been progressively extended to cover a broader spectrum
reaching basically all fields of applied sciences and engineering.

New-prominent topics include bio-medicine, nano-technology;
blending of particle-based methods and traditional finite
element methods, distributed computing in multicore machines,
virtual reality for display of simulation results and integration of
computational methods and software into embedded systems
incorporating data acquisition systems and data mining
methods, wireless sensors, info-mechanical systems and
devices and artificial intelligence techniques.

WCCMs-are a meeting point for multicultural and multi-
disciplinary relations among the IACM community in academia
and industry worldwide. They are also a forum for interchange
of state of the art information-in'the different fields and an
opportunity-for.young scientists to meet with senior
colleagues, thereby opening a world of opportunities in
research, university and industrial activities.
Eugenio Onate
Editor of IACM Expressions
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Computer modeling of parachutes in-
volves all the numerical challenges of
fluid—structure interaction (FSI). The
aerodynamics of the parachute depends
on the canopy shape and the deformation
of the canopy depends on the aero-
dynamics forces, and the two systems
need to be solved in a coupled fashion.
Because the parachute FSlis in a
category where the structure is light
(compared to the air masses involved

in the parachute dynamics) and very
sensitive to changes in the aerodynamics
forces, the coupling technique, which de-
termines how the coupling between

the equation blocks representing the fluid,
structure, and mesh moving is handled,
requires extra care.

Figure 1:
Parachute radial lines and gores

Gore

Figure 2:
Rings, sails, ring gaps, and sail slits
Sails

Spacecraft parachutes are typically very
large ringsail parachutes that are made
of a large number of gores, where a gore
is the slice of the canopy between two ra-
dial reinforcement cables running from the
parachute vent to the skirt (see

Figure 1). Ringsail parachute gores are
constructed from rings and sails, resulting
in a parachute canopy with hundreds of
ring gaps and sail slits (see Figure 2).
The complexity created by this geometric
porosity makes FSI modeling inherently
challenging.

Spacecraft parachutes are typically used
in clusters of two or three parachutes (see
Figure 3), and the contact between the
parachutes is a major challenge

specific to FSI modeling of parachute
clusters.

The core technology used in the
parachute FSI computations of the

Team for Advanced Flow Simulation and
Modeling (T*AFSM) <www.tafsm.org>
<www.jp.tafsm.org> is the Stabilized
Space-Time FSI technique [1].

The T AFSM parachute FSI computa-
tions started as early as 1997 with ax-
isymmetric computations and goes

as far back as 2000 for 3D computations.
In the early years of parachute modeling
with the space—time FSI technique,

the coupling technique was block-iterative
(see [1, 2] for the terminology), and later a
more robust version of that, which
significantly increased the coupling
stability (see [2]). In 2004 and later,

the space—time FSI computations were
based on the quasi-direct coupling and di-
rect coupling techniques [1, 2], which yield
significantly more robust algorithms for
FSI computations where the structure is
light. These techniques are for the gen-
eral case of nonmatching fluid

and structure meshes at the interface,
which is what we prefer in parachute com-
putations, but reduce to monolithic tech-
niques when the meshes are

matching. Today, the quasi-direct
coupling is the favored coupling tech-
nique in the FSI computations of the
THxAFSM.



Figure 3:
Clusters of two and three parachutes

The Homogenized Modeling of Geometric
Porosity (HMGP) was introduced in [3],
and its new version, “HMGP-FG,” was in-
troduced in [4]. The HMGP helps us by-
pass the intractable complexities of the
geometric porosity by approximating it
with an equivalent, locally varying homog-
enized porosity, which is obtained from an
HMGP computation with an n-gore slice of
the parachute canopy. Figures 4 and 5
summarize the HMGP-FG. For details,

A, : Fluid Surface Area

Ap
tuy = — (kr), Tf.lp — (k)

see [3, 4]. Even in the fully open
configuration, the parachute canopy

goes through a periodic breathing motion
where the diameter varies between its
minimum and maximum values. The
shapes and areas of the gaps and slits
vary significantly during this breathing mo-
tion (see Figure 6). It was shown in [5]
that the porosity coefficients have very
good invariance properties with respect to
these shape and area changes.

Ag : Fabric Area

A |Ap|

I-‘irm{ip} ”

Figure 4:

In the HMGP-FG, the normal velocity crossing the parachute canopy under a
pressure differential Ap is modeled by using two homogenized porosity coefficients (kg),

and (kg),; For details, see [3, 4]

A; : Gap Area

3 Iiacm expressions 31/12



Figure 5:
The two porosity coefficients are calculated from a one-time fluid mechanics only
computation with an n-gore slice of the parachute canopy, where the flow through

all the gaps and slits is resolved

Maximum Average-Up

Average-Down Minimum
Figure 6:
The shapes and the areas of the slits vary significantly during the canopy breathing mo-
tion

Descent Relative Horizontal | Breathing | Swinging
Speed (ft's) | Speed (i's) Period (s) | Period (s)

Test Data <10% Diff Comparable | <10% Diff | <10% Diff

Computation 214 41213 6.7 16.4

Figure 7:

Parachute and flow field at

an instant during the
computation and the comparison
with the test data

Comparing our computed results to data the parachute shape and flow field at
from drop tests with a base parachute de-  an instant during the computation and

sign helps us gain confidence in our para-  the comparison with the test data.
chute FSI model. Figure 7 shows

iacm expressions 31/12| 4
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Figure 8: ¢
A simulation-based parachute design study, where the objective is to
With confidence gained from comparing evaluate the aerodynamic performance of the parachute as a function

our results with test data, we can carry out of the suspension line length. See [6] for details of the study
simulation-based parachute design stud-
ies [4, 6], such as evaluating the aerody-
namic performance of the parachute as a
function of the suspension

line length (see Figure 8) or in response to
removing one of the sails of the canopy
(see Figure 9).

The contact between the canopies of

a spacecraft parachute cluster is a
computational challenge that we have ad-
dressed recently (see [7, 8]) with a contact
algorithm where the objective

is to prevent the structural surfaces from
coming closer than a minimum distance.
The Surface-Edge-Node Contact Tracking
technique was introduced in [1] for this
purpose, in [7, 8] evolved into a con-
servative version that is more robust,

and is now an essential technology in

the parachute cluster computations we
carry out. Figure 10 shows a cluster of two
parachutes at an instant during the FSI
computation when the parachutes are in
contact, and Figure 11 shows a cluster of
three parachutes at three different instants

during the FSI computation, with contact the vortex patterns in the parachute wake.
between two of the parachutes. See [7, 8] See [4] for details of the study

Figure 9:

A simulation-based parachute design study, where the objective

is to evaluate the aerodynamic performance of the parachute in re-
sponse to removing the 5th sail. The virtual smoke shows

for details.

This article shows that parachute FSI A comprehensive review of the core and
modeling can contribute valuable infor- special space—time FSI techniques used
mation and analysis to the spacecraft in spacecraft parachute modeling can be
parachute design process, and in par- found in [9]. The readers can also find
ticular the parachute cluster computations material on this subject, and some

show that spacecraft parachute modeling movies, at our Web sites

can now be done under actual conditions. <www.tafsm.org> <www.jp.tafsm.org>.

5 |iacm expressions 31/12



| Figure 10:

A cluster of two parachutes at an
instant during the FSI computa-
tion. See [7, 8] for details

This research was supported by NASA
Johnson Space Center and is an outcome
of much collaboration with and guidance
from NASA engineers, especially

Ricardo Machin. Many current and
former members of the TA*AFSM
contributed to this research; they are

the coauthors of the articles cited. ®

Figure 11:

A cluster of three parachutes at three different instants during

the FSI computation, with contact between two of the parachutes.
See [7, 8] for details
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Modeling of Highly

Heterogeneous Media

Heterogeneities in oil reservoirs

Oil production in Mexican reservoirs

is on decline, primary recovery is in the
last stages and it has become necessary
to resource to enhanced oil recovery
(EOR) techniques. Research in these
aspects is very active and numerical
modeling is playing an important role.
Several research projects on numerical
simulation are being developed, e.g.,
simulation of enhanced techniques
such as water and gas injection, and

in situ combustion.

Some Mexican oil reservoirs are better
described as Naturally Fractured Vuggy
Carbonate Reservoirs, it is acknowl-
edged that to have access to remaining
hydrocarbons present in these mature
fields is necessary to meet greater
reservoir characterization challenges
than those existing when these reser-
voirs started their productive life. It is
important to consider other alternatives
for reservoir characterization that de-
scribe heterogeneities better than tradi-
tional procedures especially if pressure
maintenance or an EOR process will be
undertaken. Some NFR have different
scales, poor fracture connectivity and
disorderly spatial distribution of fractures.
Vugs effect on permeability is related to
this connectivity.

000162

'

"l

0.000161

0.000114

Figure 1:

To describe the complex heterogeneities
of these reservoirs several theories have
come in to play, noteworthy the Theory
of Fractals, see [3]. In the simplest case,
we shall describe some aspect of the
theory and illustrate some numerical
methods of interest.

The random function path to fractal
reservoirs

Let X be a function of two variables,
X=X(xe): X is a random function if for
x e R", the function X{(x)is a random
variable.

Let M be the spatial domain occupied by
the porous medium, for a given ® ;is
simply a deterministic R-valued function
on R"; which is refereed to as a realiza-
tion of the function X.

Xo)McR'-R

Let us consider the basic equation of
single-phase flow [2],

M = v.{EK?p]+q
ot J7,

Here p the density of the fluid per unit
volume and u its viscosity. Also ¢ is

the porosity, and K the absolute perme-
ability tensor of the porous medium.

0.000052

Ll

Profiles obtained by spectral synthesis for different values of H.

7 |iacm expressions 31/12



“ .. the problem is

to generate
realizations of
porosity and
permeability with

prescribed

geostatistical
_properties.

iacm expressions 31/12| 8

15329 10,3605

0.00171 -15.1063 -0,852%

We assume that the medium is isotropic,
so K=kl ; where | is the identity tensor.

We focus on porosity and permeability
since these properties characterize the
porous medium. It is customary to
model these properties #=g@(x), k=k{x),
as random functions. In this context,

we shall refer to a reservoir as fractal,

if the level sets of these random
functions have fractional Hausdorff
dimension [1].

Consequently, for flow simulation, the
problem is to generate realizations of
porosity and permeability with prescribed
geostatistical properties [3]. There are
several algorithms to generate realiza-
tions of random functions with fractal
properties [4]. For instance, using
spectral synthesis we generate profiles
of permeability in Figure 1.

With this approach the flow equations
remain unchanged. What is necessary
is to upscale permeability to grid size
for numerical simulation. An appealing
method is that of homogenization [5].

For the steady state equation,

v -[aif}vps} g xeQ

P =0 X € oC)

we assume a is a Q-periodic function
(Qc R is the unit cube, a(y+ma)=aly)
forallye Q, me Z, and g denotes the
i-th canonical vector). Instead of solving
the equation above, the homogenization
method obtains the solution p such that
p*— p ase—» 0. pis obtained by
solving a problem with constant
coefficients,

dV, = ¢, (D, x)dx G

Figure 2:
The solution p does not reproduce the
local variation of pe .

N N
ZZ a-rlf"’l'::llJt.Jt:J =q mn Q
=] J=1
p=0 in Q)
where &; are the homogenized
coefficients.

For example, Figure 2 shows the differ-
ences between p and its differences
with p°. In this case, q is a difference
of two Gaussian functions with centers
atAand B. This is a cartoon of an
injection-production system. Due to
the variability Of z/ ,itis necessary to
use fine grid to compute g°. In actual
applications this is computationally
prohibited.

Fractional continuous media

An alternative approach is to consider
fractal media as a fractional continuous
media, see [6]. The procedure consists
on replacing the fractal medium with
fractal mass dimension by some contin-
uous medium that is described by frac-
tional integrals.

Let W be asetin R3 with Hausdorff
dimension D: If D is not an integer,
the set is fractal. The D-mass of W
is defined by the fractional integral

MD{W&J:IF?U‘}WD, X, W,
w

=2“’r(312} 1
[(D/2) |x-x| o




where p is density. Note thatif D = 3 ;
the expression M (W, %) coincides

with the euclidean case. One can
derive a fractional version of the Gauss
Theorem and proceed as customary

in Continuum Mechanics to obtain the
continuity equation

¢, zﬂ““"r[mz]
ot

=2
*TaIor@2) V(=g

Here, d corresponds to the exponent
associated to the boundary of the
fractal continuous medium.

Assuming Darcy's law, u=-kVp and
steady state we have the equation

-V -(a(x)Vp)= f(x),

where

I(d)

f(x)= r{d}zn—dl

—— =1 a0,
|

As before, we solve the equation in
an injection-production system. In
Figure 3 we show the solution as well
as the profile along the diagonal for
several values of

ax)=|"" pk

n Hausdorff dimension.
B In this elementary
0.0287 setting the model
serves its purpose,
. . heterogeneity of
the porous medium
is associated to
Hausdorff dimension
and it has the
expected effect in
400 fluidflow. @
¢ -
-0.0138
LA
Figure 3: g D=1.9 ' . i '
Solution obtained = ] =1
withD=19,d=11, - e 2 — puie
and the behavior of the solutions % _ d=1, /A = D=i.9
by varying the parameters D andd = L\ =l
- b N\ (-]
- bt . \
A S Y P 5 9.
= N
= -\“-,.-"f.. ; -
é i 1
o
; T T T T T T ? _r T T T T
0 10 20 30 40 50 0 10 20 30 40 &0
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Civil Engineering,
National Taiwan
University
ybyang@ntu.edu.tw

Figure 1:
General characteristics
of a nonlinear structure

The postbuckling response of structures
with multi winding loops is a complex
physical phenomenon. Depending on the
history of loading, the stiffness of the
structure may be softening or stiffening,
the equilibrium path may be stable or
unstable, and the structure itself may be
on a stage of loading or unloading.

All such phenomena are typified by the
occurrence of critical points such as the
limit points and shap-back points in the
load-deflection curves (Figure 1), which
often makes the iterations difficult to
converge to the desired path [14].

In this article, some key issues that are
crucial to the successful tracing of the
postbuckling response of a structure
using an incremental-iterative approach
will be highlighted [9].

Concerning the finite element equations
used, the first requirement is that the
(linearized) finite element should be
rigid-body-qualified, such that no artificial
forces will be generated upon rigid
rotations.

Secondly, the corrector used for recover-
ing the element forces from the element
displacements should be made as accu-
rate as possible, since this is the phase
that governs the accuracy of the solution.

Thirdly, the predictor used for computing
the structural displacements for given load
increments, which are approximate by
nature due to unavoidable linearization,
should be accurate to the level not to
misguide the direction of iterations.

As for the incremental-iterative scheme for
searching the equilibrium points,

QA DE — loading
N AD — unioading

Load

b stable = "

unstable

it is required to be: (1) numeri-
cally stable when encountering
the limit points,

(2) adjustable in load increments
to reflect the stiffness variation,
and

(3) self-adaptive in changing the
loading direction. In this article,
we shall assume that the up-
dated Lagrangian (UL) formula-
tion is adopted, in that all the
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of Structures with Multi Critical Points

equations of the structure at the current
configuration C2, which is to be solved,
are expressed with reference to the last
calculated configuration C1.

Quality of nonlinear finite elements

All nonlinear theories for structures
should be linearized, if a solution is to be
obtained in terms of the load-deflection
curves by the finite element approach.

In this regard, an incremental-iterative
approach (i.e., solution scheme) has to
be adopted to remove the unbalanced
forces resulting from approximations due
to linearization of the theory, updating of
geometry and member forces of the struc-
ture, or any other sources involved in the
procedure. Let us assume that a precise
procedure has been adopted for updating
the geometry and nodal forces of the
structure, as this is the most fundamental
part of an analysis. The unbalanced
forces {R} should originate from lineariza-
tion of the theory or derivation of the
element stiffness matrices [k] from the
virtual work or energy equations via nodal
representations. Here we use the term
“linearized” or “linearization” to refer to the
fact that the finite element of concern here
is initially stressed or acted upon by a set
of nodal forces {1} at each intermediate
incremental step. We shall focus our dis-
cussion on how to solve the geometrically
nonlinear and postbuckling response of
an elastic structure, with the effects of
material nonlinearity or yielding excluded.

By the UL formulation, one can work on
the virtual work equation or its variants
to derive the equation of equilibrium for
the finite element, in which the elastic
effect is represented by the elastic stiff-
ness [ke] and the instability effect by the
geometric stiffness [kg] [13; 7]. In this
part of derivation, some terms appearing
in the virtual work equation or encoun-
tered in the finite element formulation
are unavoidably omitted simply because
they are of “higher-orders”. As a matter
of fact, care must be taken in omitting
the so-called higher-order terms, because
some of them may appear physically in



pair, combine to represent a rigid rotation
effect, and therefore cannot be omitted
in an arbitrary manner [4; 8; Chapters
4&7inT7].

Aside from the solution scheme to be
described later, rigid rotation is an issue
central to the successful tracing of the
winding, postbuckling response of a struc-
ture using the incremental-iterative proce-
dures. In comparison, it is relatively
easier for the elastic stiffness [ke] to sat-
isfy the rigid rotation property, but the
same is not true for the geometric stiff-
ness [kg], if the neglect of higher-order
terms has not been handled in a delicate
way with the rigid rotation effect kept in
mind [Chapters 4 & 7 in 7].

What we like to point out here is that if
the rigid rotation effect is not properly
represented by the nonlinear finite ele-
ment, especially by the geometric stiffness
[kg], then unbalanced forces {R} will be
induced upon rigid rotations, which can
hardly be eliminated by further iterations
using the same rigid-body-defective stiff-
ness. Eventually, the iterations are likely
to diverge when further increments are
conducted or when the rigid rotations are
accumulated to a certain level.

Sometimes we called this phenomenon a
result from the lack of a proper direction of
iterations [3]. A nonlinear finite element
with such rigid-rotation defects can still

be used for “slightly nonlinear” problems,
but is not suitable for use in problems of
which the postbuckling response may
involve extremely large rotations.

Rigid body rule

A simple way to test if a nonlinear finite
element can accommodate rigid rotations
is by the rigid body rule [6]. To illustrate
this rule, let us consider a bar subjected to
a compression P and sitting on the earth
in Figure 2. When the earth undergoes a
rigid rotation , the line of action of force P
rotates with the rotation, but its magnitude
remains unchanged. An overall result is
the preservation of equilibrium of the bar
in the rotated position.

The same conclusion holds for the bar if it
is subjected to and equilibrated by a set of
forces, i.e., {1f}, including the axial forces,
shear forces, and bending moments at C1,
as is the case for the 2D beam shown in
Figure 3.

Based on the above observation, the rigid

g

Earthl P

(a)
Figure 2:
A stressed bar before and after rigid rotation

F

Figure 3:

2D stressed beam before and after rigid rotation

body rule can be stated as follows: For a
bar initially acted upon by a set of forces
{1f} in equilibrium at C4, it should remain in
equilibrium after the rigid rotation at Cz,
with no change on the magnitudes of the
acting forces. It should be noted that no
limit has been placed on the magnitude of
rotation for the rigid body rule to be valid.
It is easy to conceive the rigid body rule
for the 3D beam element or other types of
finite elements that are initially acted upon
by a set of nodal forces {1f}.

The rigid body rule described above is a
universal one, which serves as the mini-
mum condition for testing the legitimacy
of a nonlinear finite element, with

initial nodal forces. -

_,,"' Mo+ M ~
One simple reason for this is /".x.—\ I N
that the stiffness equation {1y '-‘":_. Fazd
derived for each finite ele- | ’\“f: rornen
ment, if reasonably derived, =~ 7 | TawaEl
should work for any types of = % ‘:*_f_:_f'm“"“
deformations {u}, including b, Vg X
the bottom line of rigid dis- ~ I - Y
placements {ur}. The other - e
reason for a nonlinear element to be
rigid-body qualified is that at each incre- Figure 4:

mental step of a nonlinear analysis, a
large portion of the displacements of the
finite elements belongs to rigid rotations
[10; 11; 12], as illustrated in Figure 4.

Element displacements
decomposed as rigid
rotation and natural
deformation
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“ Using finite
elements that are
rigid-body qualified,
the GDC method,
along with the

GSP, can be
employed to solve
the load-deflection
postbuckling paths
of elastic structures
involving multi
critical points and
large rotations.”
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In conducting the rigid body test, all

the terms involved in the finite element
equation should be considered, including
the elastic stiffness [ke], geometric stiff-
ness [kg], initial forces {f} at C1, and
resulting forces {2f} at C2, [6; 9; 10; 11].
First, we know that a reasonably derived
elastic stiffness [ke] will generate zero
forces upon rigid rotations {ur}. It follows
that the elastic stiffness term [ke] can be
excluded, and the rigid body rule becomes
the one for testing the legitimacy of the
geometric stiffness [kg] derived for a finite
element.

The procedure of testing is quite simple.
One first assumes a rigid rotation field {ur}
(small in magnitude for convenience and
as the minimum condition to be satisfied).
Then, based on the element equation

[6 for instance], one can sum up the initial
nodal forces {1f} at C1 (in the form of
Figure 3(a)) with the forces generated by
the geometric stiffness [kg] during the rigid
rotation, i.e., [kg]{ur} to obtain the resulting
forces {2f} at Ca2. If the resulting forces {2f}
obtained are consistent with the form
shown in Figure 3(b), then the rigid body
test is passed. Otherwise, it is not. For
the case where the rigid body test is not
passed, the terms that have been missing
or over-regulated can often serve as the
clue for tracing the errors or mistakes in-
volved in deriving the finite element equa-
tion.

Predictor of incremental-iterative
analysis

One basic step in finite element analysis
is to assemble all the element stiffnesses
[K] to obtain the structural stiffness [K].
With the structural stiffness [K] made
available, one can conduct the incremen-
tal-iterative analysis by first applying a
load increment {2P}-{1P} on the structure
and then solving the structural equation
for the displacement increments {U} of the
structure. Such a step has been referred
to as the predictor stage of an incremen-
tal-iterative analysis [8; 7]. Here, we like
to note that the structural equation used in
the predictor is born to be non-exact or
approximate, as it has been derived as
the result of linearization from the original
nonlinear theory.

Furthermore, since this stage affects only
the speed of convergence or the number
of iterations, it does not add much to the

accuracy of solution by trying to improve

the exactness or the level of nonlinearity

of the stiffness matrices [k] used in this

part of analysis. Unfortunately, this

has been the point of focus of numerous
previous researches. For the purpose

of successfully tracing the postbuckling
response of structures, however, it is
required that the structural stiffness
matrices [k] used in the predictor be rigid-
body qualified in order not to misguide
the direction of iteration [3].

Corrector of incremental-iterative
analysis

Once the structural displacement incre-
ments {U} are solved for a load increment
{2P}-{1P} in the predictor, we can obtain
the displacement increments {u} for each
element of the structure. With this, we are
ready to compute the nodal forces {2f} for
each element at the updated, deformed
configuration C2. Such a stage has been
referred to as the corrector of an incre-
mental-iterative nonlinear analysis [8; 7].
Since the corrector governs the accuracy
of the solution by an incremental-iterative
procedure, it should be carried out in a
very careful, precise way.

To calculate the nodal forces {2f} at Cz,

it is conceptually easier to divide the
element displacements {u} into two parts
as the rigid displacements {ur} and natural
deformations {un}.

First, the initial nodal forces {1f} existing
on the element at C1 when undergoing
the rigid displacements {ur} can be treated
as those acting at C2 with reference to C2
according to the rigid body rule.

Second, the elastic force increments {f}
generated at the incremental step by the
natural deformations {un} can be com-
puted as {f} = [kel{un}.

Summing up the above two parts yields
the resulting forces {2f} at C2. Such a pro-
cedure of calculation is simple, but is
amazingly accurate. It has been success-
fully used as the corrector in tracing the
postbuckling response of various struc-
tures containing winding loops, namely,
with multi critical points.

After the element forces {2f} are made
available and the geometry of the
structure is updated, the total resistant
(internal) forces {F} at the structural
nodes can be computed accordingly.

As a consequence, the unbalanced forces
{R} at the newly deformed configuration
can be computed as the difference
between the total applied loads {2P} and



the total resistant forces {F}. Then
another iteration involving the predictor
and corrector should be conducted to
eliminate the unbalanced forces {R}.

However, another issue arises concerning
how to perform the iterations, namely, by
keeping the applied loads {2P} constant
or allowing them to vary, because it will
affect the capability of the iteration
scheme to bypass the limit points and
therefore to trace the postbuckling
response involving multi-critical points,

as will be described below.

Path-tracing scheme - generalized
displacement control (GDC)
method

As was stated by Yang and Shieh [14],

an incremental-iterative scheme used to

trace the postbuckling response of struc-

tures with adjacent equilibrium paths,
which may involve multi critical points,
such as limit points and snap-back points,
and large rigid rotations accumulated from
previous incremental and iterative steps,
should possess the following properties:

(1) numerical stability in passing the
limit points,

(2) automation in adjusting the load
increments to reflect the stiffness
variation, and

(3) automation in reversing the loading
direction for loading and unloading
stages.

To overcome the numerical instability
associated with the limit points, an
incremental-iterative scheme should

not be performed at constant loads, as

is the case with Newton-Raphson method
(see Figure 5). The generalized displace-
ment control (GDC) method devised by
Yang and Shieh [14] is capable of
dealing with the limit points, as iterations
are not performed at constant loads.
Besides, it utilizes the generalized
stiffness parameter (GSP) as a guiding
parameter for adjusting the load incre-
ments and for reversing the loading
directions in an automatic manner.

General stiffness parameter

Let us introduce first the GSP. This
parameter is defined as the dot product of
the tangent vectors # and v, respectively,
of the load-deflection curve shown in
Figure 6 at the start and the end of the
current incremental step, but is inversely
normalized with respect to the dot product
of the tangent vectors for the first

Load

Figure 5:
Divergence due to
iterations at constant
loads

Pt}

iB

o

Figure 6:
Characteristics of GSP

[Haplaceent

incremental step [14]. From Figure 6, it is
easy to see that the two tangent vectors
form an obtuse angle only when passing
a limit point, which means a negative dot
product, and that for all the other cases,
they form an acute angle, which means
a positive dot product. Since “passing a
limit point” means a change in loading
direction, thus when a negative sign is
detected for GSP, the loading direction
should be reversed, namely, from “load-
ing” to “unloading” after passing the first
limit point, and from “unloading” to “load-
ing” after passing the second limit point
as for the case shown in Figure 6, and
so on. This feature of the GSP has
enabled the GDC method to overcome
automatically all the limit points encoun-
tered in the winding, postbuckling path of
a structure, a special feature that makes
the GDC method outperform the arc
length method.
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Figure 7:
Two-member truss

To those researchers who have got ac-
quainted with the GDC method, they re-
gard this method as a much more reliable
one for tracing the postbuckling response
of structures [2]. It should be added that
in a numerical analysis, it is unlikely that
an iterative step will hit “right” at a limit
point, a well-known singularity problem
that cannot be avoided mathematically,
as there always exist some round-off

or truncation errors in the numerical
process.

The other feature with the GSP is that the
dot product of the two tangent vectors
of the current incremental step has been
inversely normalized with respect to that
of the first incremental step. In this way,
the GDP represents the stiffness of the
structure at the current incremental step
with respect to the first incremental step.
As a matter of fact, the GSP starts with
unity and becomes smaller when the
structure softens and greater when the
structure hardens, and becomes close
to zero when approaching a limit point.
In this way, the variation of the structural
stiffness is automatically taken into ac-
count in determining

Py

the load increment at
each step, which makes
the GDC method a very
efficient scheme.
Furthermore, unlike

the current stiffness
parameter proposed

by Bergan [1], the
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J'I.I' GSP remains bounded
in regions near the
) snhap-back points
‘“xx (or any other regions),
== rendering the GDP a
£ stable scheme for
AN getting through the
snap-back points.
Figure 8:
Two-member truss without imperfection:

(a) Pvvs. vy,
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Final remarks

Using finite elements that are rigid-body
qualified, the generalized displacement
control (GDC) method, along with the
general stiffness parameter (GSP), can
be employed to solve the load-deflection
postbuckling paths of elastic structures
involving multi critical points and large
rotations. Details of the incremental-
iterative procedure have been given in
[14].

However, for those who are newly trying
to adopt this method, it is suggested that
they work first on the two-member truss
shown in Figure 7. The reason is that it is
relatively easier to debug any logistic or
coding errors in the implementation of the
procedure when solving the two-member
truss, since each computational quantity
can be physically interpreted as this truss
contains only two degrees of freedom.
Besides, the postbuckling response of the
truss has been analytically made available
by Pecknold et al. [5].

From the point of numerical stability, the
two-member truss represents one of the
most challenging problems, due to the
existence of adjacent equilibrium paths,
multi limit points and snap-back points,
loading, unloading, and reloading, all of
which should be dealt with in a large-
rotation domain.

For the case of a vertical load, the results
for the load-deflection response and for
the GSP vs. the vertical deflection of the
truss have been shown in Figures 8(a)
and (b), respectively.

(b) GSPvs. v
Eooap
o PIE 40 i




For the case of vertical and horizontal The research reported herein on the
loads, the results for the truss are shown postuckling response of elastic structures,
in Figures 9(a)-(c) for the following: including the rigid body rule, nonlinear
(@) Pvvs. v, (b) Pvvs. u, (c) GSP vs. v. finite element quality, predictor and
The special features of the GSP can be corrector, and solution schemes, has
appreciated from Figures 8(b) and 9(c) been sponsored by a series of research
for the two cases considered. If a newly projects by the National Science Council,
developed analysis program can handle Taiwan, including the ones with grant nos.
the postbuckling behavior of the two- NSC-75-0414-P-002-21, 78-0410-E002-
member truss, then most likely it can 30, 80-0410-E002-18, 80-0410-E002-59,
deal with the postbuckling behavior of and 81-0410-E002-05.
other complicated structures.
Such a long-time financial aid is gratefully
acknowledged. ®

Figure 9:
Two-member truss with horizontal imperfection (Pu=0.05Pv):

el P (115

(a) Pvvs. v, (b) Pvvs. u,( c) GSPvs. v
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The CM Questions of the Month

by During the last four years, the author of this article has been editing an electronic
Dan Givoli newsletter on Computational Mechanics (CM), distributed twice a month to more
— | than 400 subscribers who constitute the Israeli CM community (about 50 of them are
Technion, Israel g, members of the Israel Association for Computational Methods in Mechanics —
givolid@aerodyne. |ACMM). This newsletter includes a section called “The Question of the Month,” which
technion.ac.il  is ariddle on CM subjects that the readers are asked to solve. Each month the an-
swer to the Question of last month is published, along with the names of those read-
ers who answered it correctly, and a new Question is posed. Sometimes interesting
discussions develop, as readers comment on the Questions and on the answers.

The Questions, which span all areas of CM, are composed with an educational goal in
mind. Some of the questions may be trivial to some of the readers, who have different
backgrounds in industry and academia, but hopefully there is always something new to
learn. Sometimes the Questions are quite theoretical, while occasionally they are very
practical. Some of the readers who frequently send me their answers and comments
are internationally distinguished researchers (like Achi Brandt, Roland Glowinski, Rafi
Haftka and Eli Turkel to name just a few; there are others but | will stop here in fear that
| will forget someone). Their participation in the discussion on the Questions is an
important contribution to the educational benefit of this “game”, and encourages other
members of the community to participate as well.

In the following you will find a selection of Questions, their Answers, and in some cases
comments that were made on them by readers. In order to give you, the reader of this
article, a chance to think about the Questions before looking at their answers, we first
write down all the selected questions, and only then their associated answers and
comments.

Question 1: October 2008 Question of the Month:
Equipping an Incompressible Code with Capability to Handle Buoyancy

You have in your working environment an incompressible flow code (it does not matter
what method it is based on), which is used routinely for problems in hydrodynamics.
The code is truly incompressible, namely assumes given constant density and does
not include any temperature effects. One day, you suspect that a certain industrial
process that you are working on involves Rayleigh-Benard instability, in which
temperature plays a crucial role. Rather than buying a new code, you
decide to change the existing code in order to be able to simulate the
Rayleigh-Benard convection. What is the easiest way to do this, namely
the way which would require minimal changes in the existing code?

Rayleigh-Benard convection in a process of crystal growth from the melt.

Temperature and velocity distributions are shown in a vertical plane of

the crucible. Figure taken from Givoli, Flaherty and Shephard, Modelling
Simul. Mater. Sci. Eng. 4 (1996) 623—639.

Question 2: April 2009 Question of the Month:
Measuring Closeness of a Matrix to Being Singular

Many computational methods lead to a linear algebraic problem, where a system of
linear algebraic equations has to be solved. The matrix appearing in this system must
not be singular, otherwise the system cannot be solved. However, sometimes the
matrix is not singular but “almost singular”, and in such cases the solution of the
system may become problematic, and special care must be taken.

" Roshkais an imaginary character who appears quite a lot in the Questions, and represents the naive engineer who has yet a lot
to learn about computational methods. Roshka will appear again in another question below.
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The question arises: how do we measure the closeness of a matrix to being singular?

Our friend Roshka' has an idea: he calculates and looks at the determinant of the
matrix. Since the determinant of a singular matrix is zero, the determinant might be
regarded as a measure of the closeness to singularity; the smaller the determinant is
(in absolute value) the closer the matrix is to being singular.

The question is: Why is Roshka’s idea a bad idea? And what better idea would
you suggest to measure how close a matrix is to being singular?

Question 3: September 2009 Question of the Month:
Discontinuous Galerkin

In recent years, the class of methods called Discontinuous Galerkin (DG) has emerged
and has become popular among those developing new Finite Element (FE) techniques.
One of the properties of DG is that the solution (elastic displacement, temperature, etc.)
is not required to be continuous across element boundaries, and so may have “jumps”
on the interfaces between neighboring elements. This is so even though the exact
solution is known to be continuous. In contrast, the standard FE method produces
numerical solutions which are continuous by construction. (Of course, the derivatives
of the primary solutions — stresses, heat fluxes, etc. — are discontinu-
ous even in the standard FE method. But here we are talking about
the primary solution — elastic displacement, temperature, etc.)

This property of the DG may look strange — it may seem non-
beneficial to allow the approximate solution to be discontinuous
when we know that the exact solution is continuous.

What is the explanation and motivation for this?

Boris Galerkin Discontinuous Galerkin

Question 4: October 2009 Question of the Month: (1671-1945)

Wave Resolution

Imagine that you are a group leader in the computational engineering company
BATALA? (Benchmarks And Theoretical Analysis for Low-tech Applications).
Roshka is a junior member of your group. Here is a dialogue between the two of you:

Roshka: About this wave problem that you gave me to solve, related to the
new project...

You: Yes, how about it?

Roshka: It goes very well. Remember, you told me to solve it for many various wave-
lengths, the smallest being 0.001 meter and the largest being 1 meter.

You: Right.

Roshka: So | started with the 1 meter wave-length. | created a mesh with 20 elements
per wave-length, because | read in an old report that there is a rule of thumb saying
that 10 elements per wave-length should be good enough, and | wanted to be safe.
You: But you should check that...

Roshka: Not to worry! You remember that for the 1 meter wave-length (and for this
wave-length only) we have some experimental results? Well, | compared the numerical
results to the experimental results and the agreement is excellent!

You: Very good.

Roshka: So in principle this is the end of the story. | will go on and solve
the problem for all the wave-lengths from 1m down to 0.001m, and in each
case | will take 20 elements per wave-length. The mesh for the smallest
wave-lengths will be quite dense, but it's not too terrible. I'll finish on
Monday and then leave for my ski vacation.

You: Yet another vacation?! You just returned from one! Anyway,

| hate to disappoint you, Roshka, but what you suggest to do will

most probably not give us good results.

Explain why you said this to Roshka.

2 In Hebrew, the word "Batala" means idleness, the state of doing nothing. It usually refers to resting during a vacation.
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Answer to question 1: Equipping an Incompressible Code with Capability to
Handle Buoyancy

The first thought that one might have is that one has to turn the code into a
compressible code. After all, Rayleigh-Benard instability is caused by buoyancy
effects, namely hot fluid becomes less dense and thus tends to go up (against
gravity) while cold fluid becomes more dense and thus tends to go down. Thus,
density becomes variable and the fluid is not incompressible any more.

However, turning an incompressible code into a fully compressible code is a night-
mare... First of all, the velocity and pressure on one hand and the temperature on the
other become fully coupled (through the equation of state that connects the energy
equation to the momentum equations), and one has to solve for the temperature field
simultaneously with the other variables. This involves some major technical changes in

the code. Second, the properties of numerical schemes (stability and accuracy)
for compressible and incompressible flows are totally different, and thus the
“switch” from incompressible to compressible requires a lot of caution and is

far from being “automatic”.

What may save the day is the so-called Boussinesq approximation, which is
valid in many applications (for example, it is heavily used in crystal growth ap-
plications). It is based on approximating the change in the density due to the
temperature by the first-order term in a Taylor series around the nominal den-
sity. In this case the equations to be solved are not modified at all, except for a

Simon Brandon
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“buoyancy forcing term” in the right-hand-side of the relevant momentum equa-
tion which is a linear function of the temperature. This has the advantage that
the density remains a given constant in the governing equations. Moreover,
there is no full coupling between the temperature and the other variables.
Thus, we can first solve for the temperature distribution (maybe using a
separate, thermal code), and then solve separately for the velocity and pres-
sure fields using our slightly modified incompressible code.

Correct answers were obtained from: Simon Brandon, Alex Gelfgat,

Alex Gelfgat Amiel Herszage, Stephane Seror, David Sidilkover, Alex Yakhot.

Answer to question 2:  Measuring Closeness of a Matrix to Being Singular

Using the determinant to measure the closeness of a matrix to being singular is a
very bad idea from several reasons. First, the determinant depends on the size of the
entries of the matrix in a misleading way. Here is a demonstration of this. Consider
a NxN diagonal matrix with entries equal to 0.1 on the diagonal. This matrix is as
“perfect” as the identity matrix, and is not close to being singular at all. However,

its determinant is D=0.1". If N is a large number, D will be a small number. Even

for N=6 we will already get D=10%, and if N is a million (which is not so rare for CM
applications), D will be an extremely tiny number. From looking at this tiny number
one might wrongly conclude that the matrix is close to singular. Moreover, one would
conclude that a matrix like that with N=million is closer to being singular than such a
matrix with N=1, which is of course nonsense.

Related to this, the determinant D is a bad measure also because it depends on the en-
gineering units that we use to write down the entries of the matrix. Suppose, for exam-
ple, that the matrix entries have units of length. Then we will get two very different
results for D if we use meters or millimeters as our units!

The standard way to measure “closeness to singularity” is through the Condition Num-
ber of the matrix. The condition number can be computed as the ratio of the maximum
singular value of the matrix to the minimum singular value. (The “singular values” of a
matrix are real positive values related to the Singular Value Decomposition (SVD) of the
matrix; see books on numerical linear algebra.) For matrices with simple structure
(called “normal matrices”), such as real symmetric matrices, the notions of singular val-
ues and eigenvalues coincide (up to a sign), and then the condition number is the ratio
of the largest eigenvalue and smallest eigenvalue (in absolute values).



The condition number really measures how the solution of the system Ax=b
changes when we slightly change the matrix A (or the vector b). Thusiitis a
measure of the sensitivity of the matrix. A singular matrix has infinite sensitivity,
and an infinite condition number. A perfect matrix has condition number 1.

Correct answers were obtained from: Rami Ben-Zvi, Hillel Tal-Ezer, Amiel
Herszage, Pavel Trapper, Eli Turkel, Kosta Volokh, Asher Yahalom, Zvi Zaphir.

Comment:
Achi Brandt® comments that although my answer is indeed the standard one,

it is not the best answer. The condition number may grow arbitrarily upon
rescaling of equations and unknowns. Besides, it is not a good measure of
how easy it is to numerically invert a matrix accurately; for example a non-
singular diagonal matrix can have any condition number, but is trivial to invert
or to solve with. The best answer is that the “closeness to singularity” is mea-
sured not by the condition number of the matrix itself, but by the the condition
number of another matrix, called the “bi-normalized matrix”. See details in the
2004 paper of Oren Livne and Gene Golub, “Scaling by binormalization,”
Numerical Algorithms 35: 97—120, 2004 (and see the interesting dedication!).

Achi Brandlt

Answer to question 3:  Discontinuous Galerkin

To fix ideas, let us consider the problem of steady-state heat conduction. (Analogous
arguments can be given to problems in elasticity.) Suppose we have a finite domain
(the body) in which the steady-state heat equation holds. We assume that along a part
of the boundary of the body the temperature is given (a Dirichlet boundary condition)
whereas on another part of the boundary the normal heat flux is given (a Neumann
boundary condition). Now, let us construct a mesh of finite elements in this domain.

What is our goal?
We want to find a numerical solution that has the following 5 properties:

A. In each element, the solution satisfies (exactly or approximately) the
equation of steady-state heat conduction.

B. On the part of the external boundary where the temperature is given,
the solution satisfies (exactly or approximately) this boundary condition.

C. On the part of the external boundary where the normal heat flux is given,
the solution satisfies (exactly or approximately) this boundary condition.

D. The temperature (namely the solution itself) should be (exactly or
approximately) continuous across element borders.

E. The normal heat flux (related to the solution gradient) should be
(exactly or approximately) continuous across element borders.

Obviously, no numerical method would generally satisfy all five requirements exactly,
because this would mean that we have found the analytical solution of the problem,
and thus there is no need for a numerical method. So in general, at least s