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editorial
This issue of Expressions will be practically coincident with the
10th World Congress on Computational Mechanics organized 
by the IACM in the city of Sao Paulo on 8-13 July 2012.  
Previous editions of this global event took place in Austin (1980),
Stuttgart (1990), Tokyo (1994), Buenos Aires (1998), Vienna
(2002), Beijing (2004), Los Angeles (2006), Venice (2008) 
and Sydney (2010).  Some 2000 participants will participate in
WCCM X in Sao Paulo.

On behalf of the IACM I thank the effort of the organizers of the
Sao Paulo congress, and in particular the involvement of Prof.
Paulo Pimenta as Chairman of the congress and his co-workers
for making of WCCM X another successful IACM event.

WCCM XI will take place in Barcelona, on July 20-25 2014 
in conjunction with two major ECCOMAS conferences: 
the 5th European Conference on Computational Mechanics
(ECCM V) and the 6th European Conference on Computational
Fluid Dynamics (ECFD VI).

World congresses on Computational Mechanics are the 
major events organized by the IACM.  They aim to gathering 
researchers, developers and practitioners in the broad field of
computational methods in engineering and applied sciences.
The participation in the WCCMs has progressively increased
from some 500 participants in the first meeting in Austin to the
2000 participants in Sao Paulo, with a peak of 3000 participants
in WCCM VIII in Venice in 2008.
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The support and involvement of the international computational
mechanics community to WCCMs is a sign of the vitality of 
the field.  This is nowadays more apparent when we are facing
a deep economic crisis that affects all countries in the world, 
directly or indirectly.

The topics covered in the WCCMs have also evolved.  The 
traditional areas in computational solid and fluid mechanics
have been progressively extended to cover a broader spectrum
reaching basically all fields of applied sciences and engineering.

New prominent topics include bio-medicine, nano-technology,
blending of particle-based methods and traditional finite 
element methods, distributed computing in multicore machines,
virtual reality for display of simulation results and integration of
computational methods and software into embedded systems
incorporating data acquisition systems and data mining 
methods, wireless sensors, info-mechanical systems and 
devices and artificial intelligence techniques.

WCCMs are a meeting point for multicultural and multi-
disciplinary relations among the IACM community in academia
and industry worldwide.  They are also a forum for interchange 
of state of the art information in the different fields and an 
opportunity for young scientists to meet with senior 
colleagues, thereby opening a world of opportunities in 
research, university and industrial activities.

Eugenio Oñate
Editor of IACM Expressions
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Computer modeling of parachutes in-
volves all the numerical challenges of
fluid–structure interaction (FSI).  The
aerodynamics of the parachute depends
on the canopy shape and the deformation
of the canopy depends on the aero-
dynamics forces, and the two systems
need to be solved in a coupled fashion.
Because the parachute FSI is in a 
category where the structure is light 
(compared to the air masses involved 
in the parachute dynamics) and very 
sensitive to changes in the aerodynamics
forces, the coupling technique, which de-
termines how the coupling between 
the equation blocks representing the fluid,
structure, and mesh moving is handled,
requires extra care.

Spacecraft parachutes are typically very
large ringsail parachutes that are made 
of a large number of gores, where a gore
is the slice of the canopy between two ra-
dial reinforcement cables running from the
parachute vent to the skirt (see 
Figure 1).  Ringsail parachute gores are
constructed from rings and sails, resulting
in a parachute canopy with hundreds of
ring gaps and sail slits (see Figure 2).
The complexity created by this geometric
porosity makes FSI modeling inherently
challenging.

Spacecraft parachutes are typically used
in clusters of two or three parachutes (see
Figure 3), and the contact between the
parachutes is a major challenge 
specific to FSI modeling of parachute
clusters.

The core technology used in the 
parachute FSI computations of the 
Team for Advanced Flow Simulation and
Modeling (TÚAFSM) <www.tafsm.org>
<www.jp.tafsm.org> is the Stabilized
Space–Time FSI technique [1].  
The TÚAFSM parachute FSI computa-
tions started as early as 1997 with ax-
isymmetric computations and goes 
as far back as 2000 for 3D computations.
In the early years of parachute modeling
with the space–time FSI technique, 
the coupling technique was block-iterative
(see [1, 2] for the terminology), and later a
more robust version of that, which 
significantly increased the coupling 
stability (see [2]).  In 2004 and later, 
the space–time FSI computations were
based on the quasi-direct coupling and di-
rect coupling techniques [1, 2], which yield
significantly more robust algorithms for
FSI computations where the structure is
light.  These techniques are for the gen-
eral case of nonmatching fluid 
and structure meshes at the interface,
which is what we prefer in parachute com-
putations, but reduce to monolithic tech-
niques when the meshes are 
matching.  Today, the quasi-direct 
coupling is the favored coupling tech-
nique in the FSI computations of the
TÚAFSM.

FSI Model ing 

of  Spacecraft  Parachutes
by

Kenji Takizawa 
Waseda University

Tokyo
and 

Tayfun E. Tezduyar
Rice University

Houston

Figure 1:
Parachute radial lines and gores

Figure 2:
Rings, sails, ring gaps, and sail slits
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see [3, 4].  Even in the fully open 
configuration, the parachute canopy 
goes through a periodic breathing motion
where the diameter varies between its
minimum and maximum values.  The
shapes and areas of the gaps and slits
vary significantly during this breathing mo-
tion (see Figure 6).  It was shown in [5]
that the porosity coefficients have very
good invariance properties with respect to
these shape and area changes.

The Homogenized Modeling of Geometric
Porosity (HMGP) was introduced in [3],
and its new version, “HMGP-FG,” was in-
troduced in [4].  The HMGP helps us by-
pass the intractable complexities of the
geometric porosity by approximating it
with an equivalent, locally varying homog-
enized porosity, which is obtained from an
HMGP computation with an n-gore slice of
the parachute canopy.  Figures 4 and 5
summarize the HMGP-FG.  For details,

Figure 3:
Clusters of two and three parachutes

Figure 4:
In the HMGP-FG, the normal velocity crossing the parachute canopy under a 
pressure differential rp is modeled by using two homogenized porosity coefficients (kF)J
and (kG)J.  For details, see [3, 4]

p ess o s 3 _ p ess o s 0 q d /06/ 0 30 age 3
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Comparing our computed results to data
from drop tests with a base parachute de-
sign helps us gain confidence in our para-
chute FSI model.  Figure 7 shows 

the parachute shape and flow field at 
an instant during the computation and 
the comparison with the test data.

Figure 6:
The shapes and the areas of the slits vary significantly during the canopy breathing mo-
tion

Figure 7:
Parachute and flow field at 

an instant during the 
computation and the comparison

with the test data

Figure 5:
The two porosity coefficients are calculated from a one-time fluid mechanics only 
computation with an n-gore slice of the parachute canopy, where the flow through 
all the gaps and slits is resolved

p ess o s 3 _ p ess o s 0 q d /06/ 0 30 age
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A comprehensive review of the core and
special space–time FSI techniques used
in spacecraft parachute modeling can be
found in [9].  The readers can also find
material on this subject, and some
movies, at our Web sites
<www.tafsm.org> <www.jp.tafsm.org>.

With confidence gained from comparing
our results with test data, we can carry out
simulation-based parachute design stud-
ies [4, 6], such as evaluating the aerody-
namic performance of the parachute as a
function of the suspension 
line length (see Figure 8) or in response to
removing one of the sails of the canopy
(see Figure 9).

The contact between the canopies of 
a spacecraft parachute cluster is a 
computational challenge that we have ad-
dressed recently (see [7, 8]) with a contact
algorithm where the objective 
is to prevent the structural surfaces from
coming closer than a minimum distance.
The Surface-Edge-Node Contact Tracking
technique was introduced in [1] for this
purpose, in [7, 8] evolved into a con-
servative version that is more robust, 
and is now an essential technology in 
the parachute cluster computations we
carry out. Figure 10 shows a cluster of two
parachutes at an instant during the FSI
computation when the parachutes are in
contact, and Figure 11 shows a cluster of
three parachutes at three different instants
during the FSI computation, with contact
between two of the parachutes. See [7, 8]
for details.

This article shows that parachute FSI
modeling can contribute valuable infor-
mation and analysis to the spacecraft
parachute design process, and in par-
ticular the parachute cluster computations
show that spacecraft parachute modeling
can now be done under actual conditions.

Figure 9:
A simulation-based parachute design study, where the objective 
is to evaluate the aerodynamic performance of the parachute in re-
sponse to removing the 5th sail.  The virtual smoke shows 
the vortex patterns in the parachute wake. 
See [4] for details of the study

Figure 8:
A simulation-based parachute design study, where the objective is to
evaluate the aerodynamic performance of the parachute as a function
of the suspension line length. See [6] for details of the study

p ess o s 3 _ p ess o s 0 q d /06/ 0 30 age 5
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This research was supported by NASA
Johnson Space Center and is an outcome
of much collaboration with and guidance
from NASA engineers, especially 
Ricardo Machin.  Many current and 
former members of the TÚAFSM 
contributed to this research; they are 
the coauthors of the articles cited. l

Figure 10:
A cluster of two parachutes at an
instant during the FSI computa-
tion. See [7, 8] for details
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To describe the complex heterogeneities
of these reservoirs several theories have
come in to play, noteworthy the Theory
of Fractals, see [3].  In the simplest case,
we shall describe some aspect of the
theory and illustrate some numerical
methods of interest.

The random function path to fractal

reservoirs

Let  X be a function of two variables,
:  X is a random function if for   

, the function          is a random
variable.

Let M be the spatial domain occupied by
the porous medium, for a given  ω ; is
simply a deterministic R-valued function
on      ; which is refereed to as a realiza-
tion of the function  X.

Let us consider the basic equation of 
single-phase flow [2],

Here  ρ the density of the fluid per unit

volume and  μ its viscosity.  Also  φ is
the porosity, and K the absolute perme-
ability tensor of the porous medium.  

Numerical Modeling of  Highly 

Heterogeneous Media
by 

S. Botello, R. Iturriaga, 

M.A. Moreles & J. Peña

Centro de Investigación 
en Matemáticas CIMAT

MEXICO
botello,renato,moreles,

joaquin@cimat.mx

Heterogeneities in oil reservoirs

Oil production in Mexican reservoirs
is on decline, primary recovery is in the
last stages and it has become necessary
to resource to enhanced oil recovery
(EOR) techniques.  Research in these
aspects is very active and numerical
modeling is playing an important role.
Several research projects on numerical
simulation are being developed, e.g.,
simulation of enhanced techniques
such as water and gas injection, and
in situ combustion.

Some Mexican oil reservoirs are better
described as Naturally Fractured Vuggy
Carbonate Reservoirs, it is acknowl-
edged that to have access to remaining
hydrocarbons present in these mature
fields is necessary to meet greater
reservoir characterization challenges
than those existing when these reser-
voirs started their productive life.  It is
important to consider other alternatives
for reservoir characterization that de-
scribe heterogeneities better than tradi-
tional procedures especially if pressure
maintenance or an EOR process will be
undertaken.  Some NFR have different
scales, poor fracture connectivity and
disorderly spatial distribution of fractures.
Vugs effect on permeability is related to
this connectivity.

Figure 1:

Profiles obtained by spectral synthesis for different values of H.
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We assume that the medium is isotropic,
so  K = kl ; where  l is the identity tensor.

We focus on porosity and permeability
since these properties characterize the
porous medium.  It is customary to
model these properties                           ,
as random functions.  In this context,
we shall refer to a reservoir as fractal,
if the level sets of these random 
functions have fractional Hausdorff 
dimension [1].

Consequently, for flow simulation, the
problem is to generate realizations of
porosity and permeability with prescribed
geostatistical properties [3].  There are
several algorithms to generate realiza-
tions of random functions with fractal
properties [4].  For instance, using 
spectral synthesis we generate profiles
of permeability in Figure 1.

With this approach the flow equations 
remain unchanged.  What is necessary
is to upscale permeability to grid size 
for numerical simulation.  An appealing
method is that of homogenization [5].

For the steady state equation,

we assume a is a Q-periodic function 
(             is the unit cube,   
for all                      , and      denotes the
i-th canonical vector).  Instead of solving
the equation above, the homogenization
method obtains the solution p such that  

.  p is obtained by 
solving a problem with constant 
coefficients,

Figure 2:
The solution  p does not reproduce the

local variation of  pε .

where      are the homogenized 
coefficients.

For example, Figure 2 shows the differ-
ences between  p and its differences
with     .  In this case,  q is a difference
of two Gaussian functions with centers
at A and B.  This is a cartoon of an
injection-production system.  Due to    
the variability Of      ,it is necessary to
use fine grid to compute     .  In actual 
applications this is computationally
prohibited.

Fractional continuous media

An alternative approach is to consider
fractal media as a fractional continuous
media, see [6].  The procedure consists
on replacing the fractal medium with
fractal mass dimension by some contin-
uous medium that is described by frac-
tional integrals.

Let  W be a set in  R3 with Hausdorff
dimension  D :  If  D is not an integer,
the set is fractal.  The  D-mass of  W
is defined by the fractional integral

“ ... the problem is
to generate 

realizations of
porosity and 

permeability with 
prescribed 

geostatistical 
properties. ”

=0

p ess o s 3 _ p ess o s 0 q d /06/ 0 30 age 8
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where  ρ is density. Note that if D = 3 ;
the expression                coincides 
with the euclidean case.  One can 
derive a fractional version of the Gauss
Theorem and proceed as customary 
in Continuum Mechanics to obtain the
continuity equation

Here, d corresponds to the exponent 
associated to the boundary of the 
fractal continuous medium. 

Assuming Darcy's law,                and
steady state we have the equation

where  

As before, we solve the equation in 
an injection-production system.  In 
Figure 3 we show the solution as well 
as the profile along the diagonal for 

several values of
Hausdorff dimension.
In this elementary 
setting the model
serves its purpose,
heterogeneity of 
the porous medium 
is associated to 
Hausdorff dimension
and it has the 
expected effect in
fluid flow. l

Figure 3:
Solution obtained 

with D = 1.9,d = 1.1, 
and the behavior of the solutions 

by varying the parameters D and d
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The postbuckling response of structures
with multi winding loops is a complex
physical phenomenon.  Depending on the
history of loading, the stiffness of the
structure may be softening or stiffening,
the equilibrium path may be stable or 
unstable, and the structure itself may be
on a stage of loading or unloading.  
All such phenomena are typified by the
occurrence of critical points such as the
limit points and snap-back points in the
load-deflection curves (Figure 1), which
often makes the iterations difficult to 
converge to the desired path [14].  
In this article, some key issues that are
crucial to the successful tracing of the
postbuckling response of a structure 
using an incremental-iterative approach
will be highlighted [9].  

Concerning the finite element equations
used, the first requirement is that the 
(linearized) finite element should be 
rigid-body-qualified, such that no artificial
forces will be generated upon rigid 
rotations.  

Secondly, the corrector used for recover-
ing the element forces from the element
displacements should be made as accu-
rate as possible, since this is the phase
that governs the accuracy of the solution.  

Thirdly, the predictor used for computing
the structural displacements for given load
increments, which are approximate by 
nature due to unavoidable linearization,
should be accurate to the level not to 
misguide the direction of iterations.  

As for the incremental-iterative scheme for
searching the equilibrium points,
it is required to be: (1) numeri-
cally stable when encountering
the limit points, 
(2) adjustable in load increments
to reflect the stiffness variation,
and 
(3) self-adaptive in changing the
loading direction. In this article,
we shall assume that the up-
dated Lagrangian (UL) formula-
tion is adopted, in that all the

equations of the structure at the current
configuration C2, which is to be solved,
are expressed with reference to the last
calculated configuration C1.

Quality of nonlinear finite elements

All nonlinear theories for structures 
should be linearized, if a solution is to be
obtained in terms of the load-deflection
curves by the finite element approach.  
In this regard, an incremental-iterative 
approach (i.e., solution scheme) has to 
be adopted to remove the unbalanced
forces resulting from approximations due
to linearization of the theory, updating of
geometry and member forces of the struc-
ture, or any other sources involved in the
procedure.  Let us assume that a precise
procedure has been adopted for updating
the geometry and nodal forces of the
structure, as this is the most fundamental
part of an analysis.  The unbalanced
forces {R} should originate from lineariza-
tion of the theory or derivation of the 
element stiffness matrices [k] from the 
virtual work or energy equations via nodal
representations.  Here we use the term
“linearized” or “linearization” to refer to the
fact that the finite element of concern here
is initially stressed or acted upon by a set
of nodal forces {1f} at each intermediate
incremental step.  We shall focus our dis-
cussion on how to solve the geometrically
nonlinear and postbuckling response of 
an elastic structure, with the effects of 
material nonlinearity or yielding excluded. 

By the UL formulation, one can work on
the virtual work equation or its variants 
to derive the equation of equilibrium for
the finite element, in which the elastic 
effect is represented by the elastic stiff-
ness [ke] and the instability effect by the
geometric stiffness [kg] [13; 7].  In this 
part of derivation, some terms appearing
in the virtual work equation or encoun-
tered in the finite element formulation 
are unavoidably omitted simply because
they are of “higher-orders”.  As a matter 
of fact, care must be taken in omitting 
the so-called higher-order terms, because
some of them may appear physically in
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Figure 1: 
General characteristics
of a nonlinear structure
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body rule can be stated as follows: For a
bar initially acted upon by a set of forces
{1f} in equilibrium at C1, it should remain in
equilibrium after the rigid rotation  at C2,
with no change on the magnitudes of the
acting forces.  It should be noted that no
limit has been placed on the magnitude of
rotation  for the rigid body rule to be valid.
It is easy to conceive the rigid body rule
for the 3D beam element or other types of
finite elements that are initially acted upon
by a set of nodal forces {1f}. 

The rigid body rule described above is a
universal one, which serves as the mini-
mum condition for testing the legitimacy 
of a nonlinear finite element, with 
initial nodal forces.  

One simple reason for this is
that the stiffness equation
derived for each finite ele-
ment, if reasonably derived,
should work for any types of
deformations {u}, including
the bottom line of rigid dis-
placements {ur}.  The other 
reason for a nonlinear element to be
rigid-body qualified is that at each incre-
mental step of a nonlinear analysis, a
large portion of the displacements of the
finite elements belongs to rigid rotations
[10; 11; 12], as illustrated in Figure 4.

pair, combine to represent a rigid rotation
effect, and therefore cannot be omitted 
in an arbitrary manner [4; 8; Chapters 
4 & 7 in 7].

Aside from the solution scheme to be 
described later, rigid rotation is an issue
central to the successful tracing of the
winding, postbuckling response of a struc-
ture using the incremental-iterative proce-
dures.  In comparison, it is relatively
easier for the elastic stiffness  [ke] to sat-
isfy the rigid rotation property, but the
same is not true for the geometric stiff-
ness [kg], if the neglect of higher-order
terms has not been handled in a delicate
way with the rigid rotation effect kept in
mind [Chapters 4 & 7 in 7].  

What we like to point out here is that if 
the rigid rotation effect is not properly 
represented by the nonlinear finite ele-
ment, especially by the geometric stiffness
[kg], then unbalanced forces {R} will be 
induced upon rigid rotations, which can
hardly be eliminated by further iterations
using the same rigid-body-defective stiff-
ness.  Eventually, the iterations are likely
to diverge when further increments are
conducted or when the rigid rotations are
accumulated to a certain level.  

Sometimes we called this phenomenon a
result from the lack of a proper direction of
iterations [3].  A nonlinear finite element
with such rigid-rotation defects can still 
be used for “slightly nonlinear” problems,
but is not suitable for use in problems of
which the postbuckling response may 
involve extremely large rotations. 

Rigid body rule

A simple way to test if a nonlinear finite 
element can accommodate rigid rotations
is by the rigid body rule [6].  To illustrate
this rule, let us consider a bar subjected to
a compression P and sitting on the earth
in Figure 2.  When the earth undergoes a
rigid rotation , the line of action of force P
rotates with the rotation, but its magnitude
remains unchanged.  An overall result is
the preservation of equilibrium of the bar
in the rotated position.  

The same conclusion holds for the bar if it
is subjected to and equilibrated by a set of
forces, i.e., {1f}, including the axial forces,
shear forces, and bending moments at C1,
as is the case for the 2D beam shown in 
Figure 3.  

Based on the above observation, the rigid

Figure 2: 
A stressed bar before and after rigid rotation

Figure 3:
2D stressed beam before and after rigid rotation

Figure 4:
Element displacements
decomposed as rigid 
rotation and natural 
deformation
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In conducting the rigid body test, all 
the terms involved in the finite element
equation should be considered, including
the elastic stiffness [ke], geometric stiff-
ness [kg], initial forces {1f} at C1, and 
resulting forces {2f} at C2, [6; 9; 10; 11].
First, we know that a reasonably derived
elastic stiffness [ke] will generate zero
forces upon rigid rotations {ur}.  It follows
that the elastic stiffness term [ke] can be
excluded, and the rigid body rule becomes
the one for testing the legitimacy of the
geometric stiffness [kg] derived for a finite
element.  

The procedure of testing is quite simple.
One first assumes a rigid rotation field {ur}
(small in magnitude for convenience and
as the minimum condition to be satisfied).
Then, based on the element equation 
[6 for instance], one can sum up the initial
nodal forces {1f} at C1 (in the form of 
Figure 3(a)) with the forces generated by
the geometric stiffness [kg] during the rigid
rotation, i.e., [kg]{ur} to obtain the resulting
forces {2f} at C2.  If the resulting forces {2f}
obtained are consistent with the form
shown in Figure 3(b), then the rigid body
test is passed.  Otherwise, it is not. For
the case where the rigid body test is not
passed, the terms that have been missing
or over-regulated can often serve as the
clue for tracing the errors or mistakes in-
volved in deriving the finite element equa-
tion. 

Predictor of incremental-iterative 
analysis

One basic step in finite element analysis
is to assemble all the element stiffnesses
[k] to obtain the structural stiffness [K].
With the structural stiffness [K] made
available, one can conduct the incremen-
tal-iterative analysis by first applying a
load increment {2P}-{1P} on the structure
and then solving the structural equation
for the displacement increments {U} of the
structure.  Such a step has been referred
to as the predictor stage of an incremen-
tal-iterative analysis [8; 7].  Here, we like
to note that the structural equation used in
the predictor is born to be non-exact or
approximate, as it has been derived as
the result of linearization from the original
nonlinear theory.  

Furthermore, since this stage affects only
the speed of convergence or the number
of iterations, it does not add much to the
accuracy of solution by trying to improve
the exactness or the level of nonlinearity
of the stiffness matrices [k] used in this

part of analysis.  Unfortunately, this 
has been the point of focus of numerous 
previous researches.  For the purpose 
of successfully tracing the postbuckling 
response of structures, however, it is 
required that the structural stiffness 
matrices [k] used in the predictor be rigid-
body qualified in order not to misguide 
the direction of iteration [3]. 

Corrector of incremental-iterative 
analysis

Once the structural displacement incre-
ments {U} are solved for a load increment
{2P}-{1P} in the predictor, we can obtain
the displacement increments {u} for each
element of the structure.  With this, we are
ready to compute the nodal forces {2f} for
each element at the updated, deformed
configuration C2.  Such a stage has been
referred to as the corrector of an incre-
mental-iterative nonlinear analysis [8; 7].
Since the corrector governs the accuracy
of the solution by an incremental-iterative
procedure, it should be carried out in a
very careful, precise way.

To calculate the nodal forces {2f} at C2, 
it is conceptually easier to divide the 
element displacements {u} into two parts
as the rigid displacements {ur} and natural
deformations {un}.  

First, the initial nodal forces {1f} existing
on the element at C1 when undergoing 
the rigid displacements {ur} can be treated
as those acting at C2 with reference to C2

according to the rigid body rule.  

Second, the elastic force increments {f}
generated at the incremental step by the
natural deformations {un} can be com-
puted as {f} = [ke]{un}.  

Summing up the above two parts yields
the resulting forces {2f} at C2.  Such a pro-
cedure of calculation is simple, but is
amazingly accurate.  It has been success-
fully used as the corrector in tracing the
postbuckling response of various struc-
tures containing winding loops, namely,
with multi critical points.

After the element forces {2f} are made
available and the geometry of the 
structure is updated, the total resistant 
(internal) forces {F} at the structural 
nodes can be computed accordingly.  
As a consequence, the unbalanced forces
{R} at the newly deformed configuration
can be computed as the difference 
between the total applied loads {2P} and

“ Using finite 
elements that are

rigid-body qualified,
the GDC method,

along with the 
GSP, can be 

employed to solve
the load-deflection
postbuckling paths

of elastic structures 
involving multi 

critical points and
large rotations.”
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the total resistant forces {F}.  Then 
another iteration involving the predictor
and corrector should be conducted to
eliminate the unbalanced forces {R}.  

However, another issue arises concerning
how to perform the iterations, namely, by
keeping the applied loads {2P} constant 
or allowing them to vary, because it will 
affect the capability of the iteration
scheme to bypass the limit points and
therefore to trace the postbuckling 
response involving multi-critical points, 
as will be described below.

Path-tracing scheme - generalized 
displacement control (GDC) 
method

As was stated by Yang and Shieh [14], 
an incremental-iterative scheme used to
trace the postbuckling response of struc-
tures with adjacent equilibrium paths,
which may involve multi critical points,
such as limit points and snap-back points,
and large rigid rotations accumulated from
previous incremental and iterative steps,
should possess the following properties:
(1) numerical stability in passing the 

limit points, 
(2) automation in adjusting the load 

increments to reflect the stiffness
variation, and 

(3) automation in reversing the loading 
direction for loading and unloading 
stages. 

To overcome the numerical instability 
associated with the limit points, an 
incremental-iterative scheme should 
not be performed at constant loads, as 
is the case with Newton-Raphson method
(see Figure 5). The generalized displace-
ment control (GDC) method devised by
Yang and Shieh [14] is capable of 
dealing with the limit points, as iterations
are not performed at constant loads.  
Besides, it utilizes the generalized 
stiffness parameter (GSP) as a guiding
parameter for adjusting the load incre-
ments and for reversing the loading 
directions in an automatic manner. 

General stiffness parameter

Let us introduce first the GSP.  This 
parameter is defined as the dot product of
the tangent vectors     and    , respectively,
of the load-deflection curve shown in 
Figure 6 at the start and the end of the
current incremental step, but is inversely
normalized with respect to the dot product
of the tangent vectors for the first 

incremental step [14].  From Figure 6, it is
easy to see that the two tangent vectors
form an obtuse angle only when passing 
a limit point, which means a negative dot
product, and that for all the other cases,
they form an acute angle, which means 
a positive dot product.  Since “passing a
limit point” means a change in loading 
direction, thus when a negative sign is 
detected for GSP, the loading direction
should be reversed, namely, from “load-
ing” to “unloading” after passing the first
limit point, and from “unloading” to “load-
ing” after passing the second limit point 
as for the case shown in Figure 6, and 
so on.  This feature of the GSP has 
enabled the GDC method to overcome
automatically all the limit points encoun-
tered in the winding, postbuckling path of 
a structure, a special feature that makes
the GDC method outperform the arc
length method.  

Figure 5: 
Divergence due to 
iterations at constant
loads

Figure 6: 
Characteristics of GSP
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Figure 7: 
Two-member truss

To those researchers who have got ac-
quainted with the GDC method, they re-
gard this method as a much more reliable
one for tracing the postbuckling response
of structures [2].  It should be added that
in a numerical analysis, it is unlikely that
an iterative step will hit “right” at a limit
point, a well-known singularity problem
that cannot be avoided mathematically, 
as there always exist some round-off 
or truncation errors in the numerical
process.

The other feature with the GSP is that the
dot product of the two tangent vectors  
of the current incremental step has been
inversely normalized with respect to that
of the first incremental step.  In this way,
the GDP represents the stiffness of the
structure at the current incremental step
with respect to the first incremental step.
As a matter of fact, the GSP starts with
unity and becomes smaller when the
structure softens and greater when the
structure hardens, and becomes close 
to zero when approaching a limit point.  
In this way, the variation of the structural
stiffness is automatically taken into ac-

count in determining 
the load increment at
each step, which makes
the GDC method a very
efficient scheme.  
Furthermore, unlike 
the current stiffness 
parameter proposed 
by Bergan [1], the 
GSP remains bounded
in regions near the
snap-back points 
(or any other regions),
rendering the GDP a
stable scheme for 
getting through the
snap-back points. 

Final remarks

Using finite elements that are rigid-body
qualified, the generalized displacement
control (GDC) method, along with the 
general stiffness parameter (GSP), can 
be employed to solve the load-deflection
postbuckling paths of elastic structures 
involving multi critical points and large 
rotations.  Details of the incremental-
iterative procedure have been given in
[14].  

However, for those who are newly trying
to adopt this method, it is suggested that
they work first on the two-member truss
shown in Figure 7.  The reason is that it is
relatively easier to debug any logistic or
coding errors in the implementation of the
procedure when solving the two-member
truss, since each computational quantity
can be physically interpreted as this truss
contains only two degrees of freedom.
Besides, the postbuckling response of the
truss has been analytically made available
by Pecknold et al. [5].  

From the point of numerical stability, the
two-member truss represents one of the
most challenging problems, due to the 
existence of adjacent equilibrium paths,
multi limit points and snap-back points,
loading, unloading, and reloading, all of
which should be dealt with in a large-
rotation domain. 

For the case of a vertical load, the results
for the load-deflection response and for
the GSP vs. the vertical deflection of the
truss have been shown in Figures 8(a)
and (b), respectively.  

Figure 8: 
Two-member truss without imperfection: 

(a) Pv vs. v, (b) GSP vs. v
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For the case of vertical and horizontal
loads, the results for the truss are shown
in Figures 9(a)-(c) for the following: 
(a) Pv vs. v, (b) Pv vs. u, (c) GSP vs. v.
The special features of the GSP can be
appreciated from Figures 8(b) and 9(c)
for the two cases considered.  If a newly
developed analysis program can handle
the postbuckling behavior of the two-
member truss, then most likely it can 
deal with the postbuckling behavior of
other complicated structures. 
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Figure 9:
Two-member truss with horizontal imperfection (Pu=0.05Pv): 

(a) Pv vs. v, (b) Pv vs. u, ( c) GSP vs. v
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The CM Questions of  the Month

1 Roshka is an imaginary character who appears quite a lot in the Questions, and represents the naïve  engineer who has yet a lot
to learn about computational methods. Roshka will appear again in another question below. 

by
Dan Givoli

Technion, Israel
givolid@aerodyne.

technion.ac.il

During the last four years, the author of this article has been editing an electronic
newsletter on Computational Mechanics (CM), distributed twice a month to more

than 400 subscribers who constitute the Israeli CM community (about 50 of them are
full members of the Israel Association for Computational Methods in Mechanics –
IACMM). This newsletter includes a section called “The Question of the Month,” which
is a riddle on CM subjects that the readers are asked to solve.  Each month the      an-
swer to the Question of last month is published, along with the names of those   read-
ers who answered it correctly, and a new Question is posed. Sometimes interesting
discussions develop, as readers comment on the Questions and on the answers. 

The Questions, which span all areas of CM, are composed with an educational goal in
mind.  Some of the questions may be trivial to some of the readers, who have different
backgrounds in industry and academia, but hopefully there is always something new to
learn.  Sometimes the Questions are quite theoretical, while occasionally they are very
practical.  Some of the readers who frequently send me their answers and comments
are internationally distinguished researchers (like Achi Brandt, Roland Glowinski, Rafi
Haftka and Eli Turkel to name just a few; there are others but I will stop here in fear that
I will forget someone).  Their participation in the discussion on the Questions is an 
important contribution to the educational benefit of this “game”, and encourages other
members of the community to participate as well. 

In the following you will find a selection of Questions, their Answers, and in some cases
comments that were made on them by readers.  In order to give you, the reader of this
article, a chance to think about the Questions before looking at their answers, we first
write down all the selected questions, and only then their associated answers and 
comments. 

Question 1: October 2008 Question of the Month: 

Equipping an Incompressible Code with Capability to Handle Buoyancy 

You have in your working environment an incompressible flow code (it does not matter
what method it is based on), which is used routinely for problems in hydrodynamics.
The code is truly incompressible, namely assumes given constant density and does 
not include any temperature effects.  One day, you suspect that a certain industrial
process that you are working on involves Rayleigh-Benard instability, in which 

temperature plays a crucial role.  Rather than buying a new code, you 
decide to change the existing code in order to be able to simulate the
Rayleigh-Benard convection.  What is the easiest way to do this, namely 
the way which would require minimal changes in the existing code?

Rayleigh-Benard convection in a process of crystal growth from the melt.
Temperature and velocity distributions are shown in a vertical plane of 
the crucible.  Figure taken from Givoli, Flaherty and Shephard, Modelling

Simul. Mater. Sci. Eng. 4 (1996) 623–639.

Question 2: April 2009 Question of the Month: 

Measuring Closeness of a Matrix to Being Singular

Many computational methods lead to a linear algebraic problem, where a system of 
linear algebraic equations has to be solved.  The matrix appearing in this system must
not be singular, otherwise the system cannot be solved.  However, sometimes the 
matrix is not singular but “almost singular”, and in such cases the solution of the 
system may become problematic, and special care must be taken.
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The question arises: how do we measure the closeness of a matrix to being singular?

Our friend Roshka
1

has an idea: he calculates and looks at the determinant of the 
matrix.  Since the determinant of a singular matrix is zero, the determinant might be 
regarded as a measure of the closeness to singularity; the smaller the determinant is
(in absolute value) the closer the matrix is to being singular.

The question is:  Why is Roshka’s idea a bad idea?  And what better idea would
you suggest to measure how close a matrix is to being singular?

Question 3: September 2009 Question of the Month: 

Discontinuous Galerkin

In recent years, the class of methods called Discontinuous Galerkin (DG) has emerged
and has become popular among those developing new Finite Element (FE) techniques.
One of the properties of DG is that the solution (elastic displacement, temperature, etc.)
is not required to be continuous across element boundaries, and so may have “jumps”
on the interfaces between neighboring elements.  This is so even though the exact 
solution is known to be continuous. In contrast, the standard FE method produces 
numerical solutions which are continuous by construction.  (Of course, the derivatives
of the primary solutions – stresses, heat fluxes, etc. – are discontinu-
ous even in the standard FE method. But here we are talking about
the primary solution – elastic displacement, temperature, etc.)

This property of the DG may look strange – it may seem non-
beneficial to allow the approximate solution to be discontinuous 
when we know that the exact solution is continuous.  
What is the explanation and motivation for this?

Question 4: October 2009 Question of the Month: 

Wave Resolution 

Imagine that you are a group leader in the computational engineering company
BATALA2 (Benchmarks And Theoretical Analysis for Low-tech Applications). 
Roshka is a junior member of your group.  Here is a dialogue between the two of you:

Roshka: About this wave problem that you gave me to solve, related to the 
new project...
You: Yes, how about it?
Roshka: It goes very well. Remember, you told me to solve it for many various wave-
lengths, the smallest being 0.001 meter and the largest being 1 meter.
You: Right.
Roshka: So I started with the 1 meter wave-length. I created a mesh with 20 elements
per wave-length, because I read in an old report that there is a rule of thumb saying
that 10 elements per wave-length should be good enough, and I wanted to be safe.
You: But you should check that...
Roshka: Not to worry! You remember that for the 1 meter wave-length (and for this
wave-length only) we have some experimental results? Well, I compared the numerical
results to the experimental results and the agreement is excellent!
You: Very good.
Roshka: So in principle this is the end of the story.  I will go on and solve 
the problem for all the wave-lengths from 1m down to 0.001m, and in each
case I will take 20 elements per wave-length.  The mesh for the smallest
wave-lengths will be quite dense, but it’s not too terrible.  I’ll finish on 
Monday and then leave for my ski vacation.
You: Yet another vacation?!  You just returned from one!  Anyway, 
I hate to disappoint you, Roshka, but what you suggest to do will 
most probably not give us good results.

Explain why you said this to Roshka.

2 In Hebrew, the word "Batala" means idleness, the state of doing nothing. It usually refers to resting during a vacation. 

Boris Galerkin           Discontinuous Galerkin 
(1871-1945)
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Answer to question 1: Equipping an Incompressible Code with Capability to 

Handle Buoyancy 

The first thought that one might have is that one has to turn the code into a 
compressible code.  After all, Rayleigh-Benard instability is caused by buoyancy 
effects, namely hot fluid becomes less dense and thus tends to go up (against 
gravity) while cold fluid becomes more dense and thus tends to go down.  Thus, 
density becomes variable and the fluid is not incompressible any more.

However, turning an incompressible code into a fully compressible code is a night-
mare...  First of all, the velocity and pressure on one hand and the temperature on the
other become fully coupled (through the equation of state that connects the energy
equation to the momentum equations), and one has to solve for the temperature field
simultaneously with the other variables.  This involves some major technical changes in

the code.  Second, the properties of numerical schemes (stability and accuracy)
for compressible and incompressible flows are totally different, and thus the
“switch” from incompressible to compressible requires a lot of caution and is 
far from being “automatic”.

What may save the day is the so-called Boussinesq approximation, which is
valid in many applications (for example, it is heavily used in crystal growth ap-
plications).  It is based on approximating the change in the density due to the
temperature by the first-order term in a Taylor series around the nominal den-
sity. In this case the equations to be solved are not modified at all, except for a
“buoyancy forcing term” in the right-hand-side of the relevant momentum equa-
tion which is a linear function of the temperature.  This has the advantage that
the density remains a given constant in the governing equations.  Moreover,
there is no full coupling between the temperature and the other variables.
Thus, we can first solve for the temperature distribution (maybe using a 
separate, thermal code), and then solve separately for the velocity and pres-
sure fields using our slightly modified incompressible code.

Correct answers were obtained from: Simon Brandon, Alex Gelfgat, 
Amiel Herszage, Stephane Seror, David Sidilkover, Alex Yakhot.

Answer to question 2:  Measuring Closeness of a Matrix to Being Singular

Using the determinant to measure the closeness of a matrix to being singular is a 
very bad idea from several reasons.  First, the determinant depends on the size of the
entries of the matrix in a misleading way.  Here is a demonstration of this.  Consider 
a N×N diagonal matrix with entries equal to 0.1 on the diagonal.  This matrix is as 
“perfect” as the identity matrix, and is not close to being singular at all.  However, 
its determinant is D=0.1N.  If N is a large number, D will be a small number.  Even 
for N=6 we will already get D=10-6, and if N is a million (which is not so rare for CM 
applications), D will be an extremely tiny number.  From looking at this tiny number
one might wrongly conclude that the matrix is close to singular.  Moreover, one would
conclude that a matrix like that with N=million is closer to being singular than such a 
matrix with N=1, which is of course nonsense.

Related to this, the determinant D is a bad measure also because it depends on the en-
gineering units that we use to write down the entries of the matrix.  Suppose, for exam-
ple, that the matrix entries have units of length.  Then we will get two very different
results for D if we use meters or millimeters as our units!

The standard way to measure “closeness to singularity” is through the Condition Num-
ber of the matrix.  The condition number can be computed as the ratio of the maximum
singular value of the matrix to the minimum singular value.  (The “singular values” of a
matrix are real positive values related to the Singular Value Decomposition (SVD) of the
matrix; see books on numerical linear algebra.)  For matrices with simple structure
(called “normal matrices”), such as real symmetric matrices, the notions of singular val-
ues and eigenvalues coincide (up to a sign), and then the condition number is the ratio
of the largest eigenvalue and smallest eigenvalue (in absolute values). 

Alex Yakhot         Amiel Herszage

Simon Brandon          Alex Gelfgat
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The condition number really measures how the solution of the system Ax=b
changes when we slightly change the matrix A (or the vector b).  Thus it is a
measure of the sensitivity of the matrix. A singular matrix has infinite sensitivity,
and an infinite condition number.  A perfect matrix has condition number 1.

Correct answers were obtained from: Rami Ben-Zvi, Hillel Tal-Ezer, Amiel
Herszage, Pavel Trapper, Eli Turkel, Kosta Volokh, Asher Yahalom, Zvi Zaphir.

Comment:
Achi Brandt3 comments that although my answer is indeed the standard one, 
it is not the best answer.  The condition number may grow arbitrarily upon 
rescaling of equations and unknowns.  Besides, it is not a good measure of 
how easy it is to numerically invert a matrix accurately; for example a non-
singular diagonal matrix can have any condition number, but is trivial to invert 
or to solve with.  The best answer is that the “closeness to singularity” is mea-
sured not by the condition number of the matrix itself, but by the the condition
number of another matrix, called the “bi-normalized matrix”.  See details in the
2004 paper of Oren Livne and Gene Golub, “Scaling by binormalization,” 
Numerical Algorithms 35: 97–120, 2004 (and see the interesting dedication!). 

Answer to question 3: Discontinuous Galerkin

To fix ideas, let us consider the problem of steady-state heat conduction. (Analogous
arguments can be given to problems in elasticity.)  Suppose we have a finite domain
(the body) in which the steady-state heat equation holds. We assume that along a part
of the boundary of the body the temperature is given (a Dirichlet boundary condition)
whereas on another part of the boundary the normal heat flux is given (a Neumann
boundary condition).  Now, let us construct a mesh of finite elements in this domain.

What is our goal?  
We want to find a numerical solution that has the following 5 properties:

A. In each element, the solution satisfies (exactly or approximately) the 
equation of steady-state heat conduction.

B. On the part of the external boundary where the temperature is given, 
the solution satisfies (exactly or approximately) this boundary condition.

C. On the part of the external boundary where the normal heat flux is given, 
the solution satisfies (exactly or approximately) this boundary condition.

D. The temperature (namely the solution itself) should be (exactly or 
approximately) continuous across element borders.

E. The normal heat flux (related to the solution gradient) should be 
(exactly or approximately) continuous across element borders.

Obviously, no numerical method would generally satisfy all five requirements exactly,
because this would mean that we have found the analytical solution of the problem,
and thus there is no need for a numerical method.  So in general, at least some of 
the five requirements are to be satisfied approximately.  The standard finite element
(FE) method satisfies A, C and E approximately and B and D exactly.  More precisely
(and we will not discuss this issue here, which has to do with variational formulations)
we say that A, C and E are satisfied weakly (or “in a weak sense”) while B and D are
satisfied strongly (or “in a strong sense”).

There are special FE methods in which the type of satisfaction of A-E is different.  
For example, FE methods in which A (the differential equation in each element) is 
satisfied exactly are called Trefftz methods.

The balance of the satisfaction of all 5 requirements – some of them weakly and some
of them strongly – has a major effect on the quality and behavior of the numerical

Hillel Tal-Ezer         Kosta Volokh

Achi Brandt           Gene Golub
(1932-2007) 

Erich Treffz
(1888-1937)

3
Prof. Achi Brandt, from the Weizmann Institute of Science, Israel, is the main inventor of the Multigrid method.
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method.  If one is not careful and tries to enforce too many requirements strongly this
may result in a bad numerical method that yields poor numerical solutions!  One 
way in which this is manifested is the phenomenon known as “locking” that some of
you may be familiar with. It is maybe surprising at first, but can be understood after
some reflection, that a strong satisfaction of a certain requirement (from A-E) is not
necessarily better than a weak satisfaction of this requirement.

Now we come to Discontinuous Galerkin (DG) methods. In these methods both D and
E are satisfied weakly.  Thus, not only the normal heat flux but also the temperature 
is not continuous across element borders.  The continuity of both temperature and 
normal heat flux is enforced in a weak sense. Does this look strange?  Yes – if you 
are very accustomed to the standard FE method.  But if you think about this a little,
there is nothing particularly “sacred” about property D that makes it more important
than all other properties.  Enforcing it weakly is not more “strange” than enforcing 
any other property weakly.

It turns out that DG methods are associated with particularly good balance among 
the five requirements, and as a result they tend to be more well behaved than the 
standard FE method in some situations.

All this is just “hand waving” and general talk.  Here are some more concrete details 
on the advantages of DG methods. RBZ quotes from Bernardo Cockburn’s lecture
notes on DG for convection-dominated problems (http://www.math.umn.edu/~cock-
burn/LectureNotes.html):

The main features that make DG methods attractive are:

* their formal high-order accuracy,
* their nonlinear stability, 
* their high parallelizability,
* their ability to handle complicated geometries (e.g., hanging nodes in 

general and within hp-adaptivity), and
* their ability to capture the discontinuities or strong gradients of the exact 

solution without producing spurious oscillations.

There is a lot to explain about each of these properties, but we shall stop here. PT
points out another important advantage of taking the primary field (temperature) to be
discontinuous. In some cases this allows one to invert some matrices on the element
level rather than on the global level, which saves a lot of computational effort.

Correct answers were obtained from: Rami Ben-Zvi, Pavel Trapper.

Answer to question 4: Wave Resolution

What I had in mind is the so-called “pollution effect” that is caused by dispersion 
error.  It turns out that keeping a fixed number of elements (or grid points) per wave
length is not a safe procedure in general, even for simple linear wave problems.  
The rule of thumb saying that one needs about 10 elements per wave length is 
good for relatively long waves, but as the waves get shorter (or their frequency 
increases) one needs more and more elements per wave length to maintain the 
same level of accuracy! 

Eli Turkel, together with his coworkers, was one of the pioneers to discover and 
research this phenomenon.  In his 1985 paper with Bayliss and Goldstein 
(J. Computational Physics, Vol. 59, pp. 396-404, 1985) they show that with a 
2nd-order-accurate numerical method the number of required grid points per wave
length λ increases like 1/√λ. Moreover, they show in this paper that the pollution 
becomes smaller for higher-order methods, and that with a really high-order method 
it becomes negligible.  Thus, ET comments, “for a spectral scheme Roshka is in fact
correct!”

Bernardo Cockburn    Rami Ben-Zvi
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At around the same time, Babuška and his coworkers
analyzed this phenomenon in more detail and coined
the name “pollution effect” to it. ET comments:  “In fact
(this effect) goes back to a much earlier paper of Kreiss 
and Oliger who showed that (in the time domain) one
needs more points per wave length – again as a func-
tion of the accuracy of the scheme – for longer periods
of time, because of phase errors.  In frequency space
this is equivalent to the pollution effect.”  Finally, ET
notes:  “Despite that these facts are known for over 20
years, most papers when doing a convergence study
assume that the number of points per wavelength is
fixed for various wave lengths.  So Roshka is in good
company.”

RG in his answer relates in detail to exactly the same 
effect, and explains what Roshka needs to do:  
“In order to achieve the same global error 
(for all wave lengths) as for the 1m wave length, Roshka needs
to set an appropriate resolution for each wave length that he solves so that the total
accumulated error will be limited to that of the 1m problem.  The resolution for the
0.001m wave length should be much higher in order to get the same global error.”

AY and ZZ proposed two correct answers that were different from the above.  
AY points out that if the problem Roshka is dealing with is nonlinear, then com-
plex wave phenomena are expected – for example, interaction among waves of 
different wave lengths – and there is no guarantee that the simple rule that
Roshka adopted would be good enough. ZZ relates to the effect of damping:
“With FEM, it is very difficult to determine the full damping matrix.  Therefore 
it is usual to assume that the damping matrix is proportional to the mass and 
stiffness, i.e., Rayleigh damping.  As long as the frequencies are low and the
damping is relatively small, this is fine.  As the frequencies increase 
proportional damping is not valid anymore, and a more appropriate damping 
simplification is usually not available. Therefore high-frequency acoustic 
problems are usually solved by energy methods and not by FEM.”

Correct answers were obtained from: Ran Ganel, Eli Turkel, 
Asher Yahalom, Zvi Zaphir.

A second collection of Questions and their answers will appear 
in a forthcoming issue of IACM Expressions. l

Figure taken for the MSc thesis of Ido Gur, 
Dept. of Aerospace Eng., Technion, 2011. 
The L2 error is shown as a function of the 

wave number for a fixed resolution R (fixed 
number of nodes per wave length).  

The three curves at the top correspond to 
the Galerkin FE method: the error increases with

the wave number – this is the pollution effect.  
The three bottom curves correspond to a 
GFEM-based scheme: the error remains 

constant as the wave number is increased.

Lord J.W.S. Rayleigh
(1842-1919)

Eli Turkel                                     Ivo Babuška
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Computational modelling – here with
reference to production and medical 

technology – has the potential to develop
into a field of research of not only scien-
tific relevance.  Model-based therapy
(e.g. simulation-assisted surgery) is still
a vision for the next decades but will,
if it is put into practice, revolutionize stan-
dard medical technology and treatment.
This will have a direct societal impact
and finally change the attitude towards
computational mechanics.

Another rewarding field of application is
production technology where economic
competition requires to shorten production
cycles enormously.  Computational model-
ling is the only way to reduce experimen-
tal effort.  However, it is only accepted as
alternative development tool if it provides
realistic results.  This again calls for better
models and methods – finally for a deep
knowledge of computational mechanics. 

The first part of the present 
article deals with the simulation
of innovative forming processes.
The further development of 
medical technology, e.g. new

stent designs, is discussed in
the second part.  Simulation-

assisted surgeries will require real
time computation.  The latter can be
achieved by means of model reduction,
an approach which has to be explored

much further in the context of non-linear
solid mechanics. 

I. Production technology

Forming of metallic sheets (see Fig. 1) is
an important production process needed
e.g. in the car and aircraft industry.  In-
creasing requirements are posed on the
variability of the products as well as the
duration of the production cycles.  For this
reason it is highly attractive to replace ex-
periments by simulation, also for the pur-
pose to improve the process methodology.
However, suitable computational methods
which reliably and efficiently provide real-
istic forming results are still lacking.  The
challenges from the computational view
are, to name only a few, the presence of
large deformations, various phenomena of
inelasticity (e.g. plasticity, damage), initial
and evolving anisotropy, rate and temper-
ature dependence, extreme aspect ratios
as well as complex contact situations.
Clearly, a considerable amount of scien-
tific work has been invested in parts of
these problems (see e.g. [1,2,3]).  Never-
theless, a holistic approach in which com-
putation and experiment are on equal
footing is not yet available.  Which steps
are required? 

The first issue is the material modelling.
Starting from the very simple rheological
model of a spring put in series with the
parallel combination of a friction and a
Maxwell element, already allows to simu-
late typical phenomena of cyclic behaviour
such as the Bauschinger effect and ratch-
etting.  The logical and direct extension of
this 1D model to 3D and finite deformation
[4] including an anisotropic yield potential
[5,6] leads to a very general constitutive
law which enables to model non-linearly
isotropic, kinematic as well as distortional
hardening.  These phenomena are
strongly correlated with the effect of
springback (see Fig. 2).  To quantify the
latter is extremely important for industrial
processes because it causes elastic un-
loading after removal of the work tools.
This changes the final shape of the prod-
uct. Obviously it is one important task of
numerical computation to compute this
final geometry in advance and help to
steer the process in such a way that its
outcome yields the desired geometry.

Challenges of  Computational Modelling in 

Production and Medical Technology
by

S. Reese, J. Frischkorn
R. Kebriaei, Y. Kiliclar

A. Radermacher
I.N. Vladimirov

RWTH 
Aachen University

http://www.
ifam.rwth-aachen.de

Figure 1:
Examples for work pieces
manufactured by forming

processes

Figure 2:
Springback of an S-rail

punch force
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Finally, it is of crucial importance to 
predict damage and failure (forming 
limit diagrams) to make a statement
about the formability of a specimen 
[7] (see also Fig. 3).  An interesting 
aspect is to increase this formability 
(i.e. sharper corners, smaller radii) by
combining standard quasistatic with high
speed forming.  Electromagnetic forming
has been proven to be a successful 
strategy for this purpose.  This represents
also a very interesting challenge for the
computational part [8] (see also Fig. 4). 

Higher temperatures lead to a more 
pronounced rate-dependent material 
behaviour.  In contrast to standard forming
processes where the temperature does
not rise very much beyond room tempera-
ture, so-called ring rolling processes 
represent typical situations where rate 
and temperature dependence play an 
important role (see Fig. 5).

Another good example, though further
away from production technology, is the
repeated start of spacecraft.  The walls 
of the cooling channels in a 
combustion chamber undergo very
high temperature gradients due 
to the extreme difference of the
temperature in the hot gas 
inflow and the coolant.  The
constitutive formulation for
the material of the cooling
channel (e.g. Narloy-Z) has
to take that into account [9].  
The number of possible starts 
of the spacecraft is very much 
depending on the amount of damage 
accumulating due to thermally induced 
inelastic deformation.

In fact, almost all previously described as-
pects come together in the simulation of
cutting processes (see Fig. 6).  Depending
on the ratio of thermal expansion with re-
spect to heat capacity and on the speed of
the process one might observe adiabatic
shear bands which lead to segmented cut-
ting processes (Fig. 6a).  Slightly different
conditions, be it a different ratio of the cru-
cial thermal parameters or a lower velocity
of the process, lead to a completely differ-
ent result of the cutting process (Fig. 6b). 

Certainly it would be additionally very in-
teresting and scientifically challenging to
incorporate the microstructure of the ma-
terials involved in the process (see e.g.
[10]).  However, today’s state of the art is
still characterized by the fact that even
though micro-macro models are available

they are generally not applied to process
simulation.  Additionally it has to be admit-
ted that such multi-scale models do not
necessarily require less material parame-
ters.  Although most parameters are phys-
ically-based it is difficult to exploit this
advantage since suitable experimental
methods from material science are still
under development.   

Figure 3:
Simulation of the Nakazima stretching test – used to determine forming
limit diagrams

Figure 4:
Distribution of major strain after forming (left: experiment, right: simula-
tion), experimental result provided by IUL (Dortmund, Germany)

Figure 5:
Ring rolling 
(experiment and simulation)

Figure 6:
(a) Segmented cutting process,          (b) Continuous cutting process
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But the material modelling is only one side
of the coin.  Its importance in process sim-
ulation is often overestimated whereas the
influences of geometry and boundary con-
ditions on the result of the production
process are not investigated with sufficient
care.  At the structural level, the issue of
finite element technology comes into
play.  Forming processes are character-
ized by bending of thin structures, the ma-
terial behaviour of which is dominated by
plasticity.  Working with a deviatoric flow
rule which is for most metallic materials a
very good assumption leads to plastic in-
compressibility.  These two situations –
bending of thin structures and plastic in-
compressibility – are known to lead to se-
vere artificial stiffening phenomena
(“locking”) if standard low order finite ele-
ment formulations are used.  Neverthe-
less, low order formulations show many
advantages, especially in the context of
non-linear problems: e.g. high robustness
with respect to severe mesh distortion,
small bandwidth of the tangential stiffness
matrix, simple meshing and remeshing.
For this reason, the use of low order finite
element formulations is still advisable
– if the locking problem can be
overcome. 

This was the starting point for the re-
search field of finite element technology
(see the milestone works [11,12]).  Devel-
opment progressed via “classical” shell
formulations (including rotational degrees-
of-freedom) (e.g. [13]) to so-called solid-
shell elements [14,15] which include only
displacement degrees-of-freedom.  The
element family Q1SP(e,s,b) (solid, solid-
shell, solid-beam, see [14]) as well as its
extension Q1STs described in [15] have
proven its efficiency in many situations
(see Fig. 2 and Fig. 7).  Important advan-
tages are the reduced number of Gauss
points i.e. increased computational effi-
ciency, the robustness with respect to se-
vere mesh distortion, the absence of
locking even for extreme aspect ratios and
finally the simplicity of the formulation. 

Let us finally come to the issue of contact

simulation.  From the point of view of the
authors the situation is very unsatisfac-
tory.  Naturally, so-called academic codes
such as FEAP (Finite Element Analysis

Program, developed at the University
of California at Berkeley, USA) are not
designed to offer the full instrumentarium
of computer aided engineering.  Thus,
they are usually not suitable to carry out
complex process simulations.  On the
other hand, commercial finite element
program systems do not well support the
implementation of user subroutines.  This
holds in particular for contact modules.
For this reason, scientists and practical
engineers have to deal with the commer-
cially available contact options which are
not well explained and in many cases,
especially in implicit simulations, slow
down the computation enormously.  How
to find a way out of this dilemma is not
clear yet.  In any case, much more inter-
action between scientists from the compu-
tational mechanics community and
engineers from industry is necessary to
steer the commercial finite element soft-
ware development into a fruitful direction.

II. Medical technology

Also for applications of medial technology,
e.g. stent implantation, sophisticated ma-
terial modelling has to be combined with
powerful finite element technology and

contact modelling.  Stents are im-
planted in the blood vessel to hold it
open and avoid regrowth of biological
material (see Fig. 8a).  This is to avoid
heart attacks, strokes or thrombosis.
In the last decade so-called self-ex-

panding stents made of the shape mem-
ory allow Nickel-Titanium (NiTi) were
brought on the market.  Here, one exploits
the effect of pseudo-elasticity which
means that a specimen made of NiTi can
undergo relatively large reversible strains
(up to 10% equivalent engineering strain).
An even newer development are shape
memory polymer stents where the transi-
tion from rubbery (high temperature) to
glassy (low temperature) behaviour is ex-
ploited (see Fig. 8b, [16]).  Interestingly,
the material model developed in [4] can
be suitably rewritten to yield the pseudo-
elastic behaviour [17]. 

NiTi stents are also a good example for
very sophisticated thin structures posing
high challenges on finite element technol-
ogy.  The finite element discretization de-
picted in Fig. 8c shows that parts of the
structure are beam-like others solid-like.
The stents are therefore a perfect play-
ground for the finite element family Q1SP
(in general eight-node elements) which
lets us easily combine solid with solid-
beam elements (see Fig. 8c).  An addi-
tional very important issue but quite open

Figure 7:
Forming results computed

by means of Q1STs
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point of research is the interaction be-
tween blood flow, blood vessel and stent.

Besides the goals to replace experiments
by simulation and to improve implant tech-
nology we aim at model-based therapy.
This means that numerical simulation
shall be used to provide additional impor-
tant information to the surgeon which is
otherwise not available.  An example is
the FESS (functional endoscopic sinus
surgery) (see Fig. 9) where the surgeon is
in danger to penetrate dangerous areas
such as the orbit or the brain.  Running
an accompanying simulation in real-
time which incorporates realistic mod-
els of the biological materials and
structures can provide important infor-
mation – e.g. about the forces needed
to carry out certain operation steps.  Es-
pecially interesting are also the effects of
cutting operations. Simulation is intended
to be used to predict these effects which
otherwise would not be known to the sur-
geon. 

To achieve a simulation in realtime the
original model has to be reduced.  For this
purpose model reduction shall be applied.
The class of methods based on singular
value decomposition has been shown to
be especially attractive for applications re-
quiring short simulation time but also a
high degree of accuracy.  These methods
work in the way that the subspace of di-
mension n (e.g. a finite element model
with n degrees-of-freedom) is projected
onto a subspace with smaller dimension
m << n (often called black box).  The
transformation matrix computed for this
purpose can be decomposed of eigenvec-
tors of the tangential stiffness matrix
(modal basis reduction method), Ritz vec-
tors (load-dependent Ritz method) or the
transformed eigenvectors of a so-called
correlation matrix (proper orthogonal de-
composition – POD).  The combination
with a non-linear finite element computa-
tion is e.g. discussed in [18].  The POD
method is for all three material models
which have been investigated (hyperelas-
tic, viscoelastic, elastoplastic) the one with
the best accuracy and the shortest CPU
time.  The relative error of the POD for an
academic example (block under compres-
sion) is in the range from 10-9 (hyper- and
viscoelastic) to 10-5 (elastoplastic).  Using
15 bases for a 20 x 20 x 20 mesh, the
CPU effort can be reduced to 1%.  The
following figures show the typical develop-
ment of a reduced model from real
medical data. CT data (Fig. 10a) are
segmented depending on the gray scales

(Fig. 10b).  It is in this way possible to
differentiate between tissue, bone and air.
Modern finite element software already
allows the transfer of these data into a
finite element model (Fig. 10c) which is
then reduced to a black box model with
only a few degrees-of-freedom. 

Figure 8:
(a) Blood vessel with plaque, 
(b) Shape memory polymer stent implanted in a blood vessel, 
(c) Discretized structure of a NiTi stent (green: solids, blue: solid-beams)

Figure 9:
Nasal area after prior and post FESS, roboter-assisted minimally
invasive surgery

Figure 10a:
Picture from CT data

(a)

(c)

(b)

solid-
beam

solid
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Conclusions

Certainly it is still a long way till computa-
tional mechanics enters practical life as
described above. Reaching this goal re-
quires still major qualitative progress in
non-linear material, finite element and
contact modelling – in a very broad sense.
Scale bridging should not be restricted to

the micro and the macro level. In fact, the
black box can be seen as the so-called
holo level which shall enable a holistic in-
vestigation of complex production
processes or medical interventions. This
is in the opinion of the authors a fascinat-
ing and thankful goal for the future. This
future has just started. l
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During earth moving processes, some
soil motions, such as rolling and glid-

ing, can cause significant amount of soil
spillage.  These soil motions, as a conse-
quence, decrease the soil-carrying capac-
ity of earth-moving equipment and
therefore increase the costs of earthwork
operation.  Moreover, the rolling and glid-
ing motions generate higher frictional con-
tact between the surfaces of soil particles
and the earth-moving equipment blade,
resulting in faster blade wear and higher
energy consumption by the tractor.  In
order to improve the operational effi-
ciency, extensive laboratory experiments
and field testing of various designs for
earth-moving equipment must be per-
formed by the equipment manufacturers.
A computational framework that can simu-
late soil motions during the earth-moving
operations will enable the equipment de-
sign to be more economical and versatile,
which can ultimately benefit the construc-
tion and agriculture industries. 

To develop a rigorous computational
framework to account for complex and in-
stantaneous motions of cohesive soils,
physics-based comprehensive material
models of soils are much warranted. In
the past three decades, there has been a
large body of soil plasticity models for sat-
urated and partially saturated soils, as
well as analyses of strain localization and
shear band for soils.  However, there has
been no published literature on healing
(recovery of elastic stiffness) models for
granular cohesive soils due to compres-
sion (compaction) and water suction,
which would provide considerably more
physical mechanism to account for partial
or complete recovery (healing) of cohe-
sive/frictional bonds among granular soil
particles under compaction or confine-
ment subsequent to prior soil damage.
There is a fundamental need for physical
and reliable modeling of the progressive
coupled elastoplastic damage and healing
mechanisms in cohesive soils under com-
plex and cyclic loading during real-world
earth moving processes.

The real starting point of CDM occurred
when Kachanov [1] published the first
paper on the creep of metals by introduc-
ing a field variable  R called “phenomeno-
logical continuity parameter”.  The
concept of effective stress within the
framework of CDM was later introduced
by Rabotnov [2].  The basic development
of continuum damage mechanics contin-
ued during the 1970s, more than one
decade after the historical development of
fracture mechanics.  In the 1980s, the
framework of damage mechanics was
built upon a significantly more rigorous
basis using the thermodynamics [3-7] and
micromechanics [8-9]. Moreover, applica-
tions of continuum damage mechanics to
engineering problems expanded dramati-
cally as many researchers became in-
volved in this discipline, such as the
applications to the modeling of creep
damage, fatigue damage, elasticity cou-
pled with damage, creep-fatigue interac-
tion, ductile plastic damage, and damage
in composite materials.  We refer to [10-
12] for comprehensive reviews on dam-
age mechanics in engineering materials.

Experimental evidence from different
fields shows that some materials can be
repaired or healed in various ways such
as chemical, physical or biological phe-
nomena, leading to progressive recovery
of internal material defects. In this study,
the healing effect can occur when the 
cohesive soil is under compression 
(compaction).  The proposed novel 
healing mechanism is different from the
idea proposed by [13] which generalized
the continuum damage mechanics with
healing processes to predict the damage
and irreversible deformation processes 
for a self-healing fiber-reinforced lamina.
Further literature review of self-healing
materials can be found in [14].
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It is noted  rt will be lowered in value due
to the incremental damage (if any) from
the previous time step.  For the isotropic
healing case, we define the evolution of
the healing  R and the healing  rt by the
rate equations. 

Net (Combined) Effect of the Hybrid

Isotropic Damage and Healing

We propose the micromechanics-moti-
vated incremental scalar form to compute
this net effect of damage-healing,  d net.
The characterizations of damage and
healing as discussed in the previous
sections can be considered as the pre-
dictor formula in our damage-healing
algorithm.  Once the associated damage
or healing variables are computed at the
time step n (damage and healing will not
occur at the same step), we apply the
so-called corrector formula to calculate
the variable of net effect of damage and
healing, d net , at the time step (n+1). 

Characterization of Effective Plastic

Response and Tangent Moduli

In accordance with the notion of effective
stress, the characterization of the plastic
response should be formulated in the
effective stress space in terms of effective
stresses      and       .  Therefore, for the
classical situation in which the yield func-
tion is postulated in the stress space, we
replace the homogenized Cauchy stress
tensor      by the effective stress tensor  
, so that the elastic-damage domain is

characterized by f .  Here,  q
represents the internal plastic variables
and the corresponding evolution can be
found below.  With the assumption of an
associative flow rule, rate-independent
plastic response is characterized in the
strain space by the constitutive equations 
(cf. [3-4]).

Characterization of Strain-Energy

Based Anisotropic Damage Evolution

In order to build into the formulation the
notion of irreversibility, we introduce a
damage criterion with the function form:

, 
where  Gt is an internal variable that 
furnishes the “radius” of the damage 
surface at the current time.  The damage
process is characterized in terms of the 
irreversible, dissipative equations of 
evolution.

Characterization of Strain-Energy

Based Hybrid Isotropic Damage

We first characterize the progressive
degradation of mechanical properties of
soils due to damage by means of a simple
isotropic damage mechanism.  To this
effect, we ascribe to the notion of equiva-
lent tensile strain      as the (undamaged)
energy norm of the tensile strain tensor.
The proposed isotropic damage mecha-
nism is called “hybrid” since the computa-
tion of this equivalent tensile strain
involves the principal tensile direction of
the total strain tensor.  This definition is at
variance with that employed by [15] as the
J2 -norm of the strain tensor.  

Accordingly, we set 

, 
where  g+/P+:g. The fourth-order 
tensor P+ denotes the “Mode I” positive
(tensile) projection tensor.  We now 
characterize the state of damage in soils
by means of a damage criterion

, formulated in the strain
space.  It is noted that the numerical value
of gt would be lowered due to the incre-
mental healing (if any) from the previous
time step.  For the isotropic damage case,
we define the evolution of the damage
variable d and the damage threshold gt by
the rate equations.

Characterization of Strain-Energy

Based Hybrid Isotropic Healing

Similar to the characterization of damage
in the previous subsection, we character-
ize the progressive recovery of mechani-
cal properties of soils due to healing by
means of a simple isotropic healing mech-
anism.  We use the notion of equivalent
compressive strain      as the energy norm
of the compressive strain tensor. 

We set 

where  g -/P-:g. The fourth-order tensor
P- denotes the “Mode I” negative
(compressive) projection tensor with 
components. 

We characterize the state of healing 
in soils by using a healing criterion  

, with the functional form:

.  Here, rt is the healing
threshold at the current (positive) time t.
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Characterization of Anisotropic Healing

Evolution

We introduce a healing criterion in 
the strain space with the following 
function form:  

,
where  Rt is an internal variable that
furnishes the “radius” of the healing 
surface                                    at the 
current time.  The healing process is 
characterized in terms of the correspond-
ing irreversible equations of evolution. 

Computational Algorithms: Two-Step

Operator Splitting Methodology

Attention is focused on the local hybrid
isotropic elastoplastic-damage-healing
rate constitutive equations.  In accordance
with the notion of operator split, we con-
sider the innovative, additive decomposi-
tion of the original problem of evolutions
into the elastic-damage-healing part and
the plastic part.

Numerical Examples of Soil Compres-

sion, Excavation and Compaction

A one-dimensional driver problem accord-
ing to the proposed damage-healing
mechanism is performed first by the 
Matlab codes.  Other numerical examples
are subsequently performed for soil com-
pression, excavation and compaction by
using two different models; i.e., the hybrid
isotropic damage model, and the hybrid
isotropic damage-healing model.  The 
numerical results from the two distinct
models are carefully compared to illustrate
the effects of healing mechanism.  
These two models are implemented into
the existing NMAP meshfree code [16] 
developed based on the semi-Lagrangian
formulation with stabilized nonconforming
nodal integration; cf. [17-18].

For the purpose of demonstrating the
healing effects, the earth-moving process
is systematically performed, including the
lifting, dumping and compaction of cohe-
sive granular soils.  In order to properly
handle large deformation and excessive
particle motion of soils, these simulations
are implemented into an existing NMAP
meshfree code.  In the following simula-
tions, the Drucker-Prager associative
multi-surface plasticity formulation is
employed to model the soil behaviour for
the sake of simplicity; cf. [18-20].  The
blade of the bulldozer is treated as a 
rigid body and thus represented by two

Figure 1:
Comparisons of deformations of soils for various stages 
of the earth-moving process simulations between 
the hybrid isotropic damage model (left column) 
and the hybrid isotropic damage-healing model (right column)
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contact surfaces in black color.  To model
the contact between soil particles and the
blade surfaces, meshfree smooth contact
algorithm [21-22] is employed.  A layer 
of soils with the dimension 4 X 2 m is 
discretized into 41 X 21 X 861 uniformly
distributed particles.  The natural contact
algorithm of [23] is applied to model the
contact between the soil particles and the
ground surfaces.  The bulldozer blade is
controlled: 
(i) to move horizontally to the right for 

0.3 m, 
(ii) to lift the soils vertically for 3 m, 
(iii) to move horizontally to the right for 

1.8 m, 
(iv) to rotate 45 degrees to dump the 

soils over the wall, and then 
(v) to rotate back to move forward 

and downward to compact the soils 
in the ground hole.  

The comparisons of progressive de
formations at various time steps between
the hybrid isotropic damage-only model
and the hybrid isotropic damage-healing
model are displayed in Figure 1.  In these
figures, the blue solid circles represent the
soil particles with no damage ( d net = 0 ),
the red solid circles symbolize the soil
particles with full damage ( d net = 0.95,

the preset upper bound damage in these
simulations), and the solid circles in other
colors (such as green, yellow and orange)
signify partial damage between 0 and
0.95. 

From Figure 1, for both the damage-only
model and the damage-healing model,
it is observed that the soil shear bands
are formatted under the pushing-lifting of
the bulldozer blade.  However, once the
healing mechanism is triggered, the sub-
sequent soil motions and deformations
are different for the two models.  Most of

the soil particles from the lower triangle
under the shear band slide out of the
blade before subsequent dumping.  
This is induced by the hybrid isotropic
damage-only model, without any healing
mechanism.  By contrast, in Figure 1, the
shear bands are partially healed under
compression such that the soil particles
from the lower triangle under the shear
band are not squeezed out.  The healing
effect can be clearly observed when the
soil compaction is performed.  The color
of most soil particles in the ground hole
gradually changes from red (full damage)
to green (low damage) due to the healing
mechanism when the soil particles are
under blade compaction.  By contrast,
without the healing effect, the color of
most soil particles in the ground hole still
remains red (full damage) even when the
soil particles are under compaction.

Closing Remarks

We can readily extend the computational
algorithms to handle strain-energy based
elastoplastic anisotropic damage and
healing models, and perform numerical
simulations for such anisotropic damage-
healing models accordingly.  Full details
are presented in [24-25].  

Further, improved two-parameter volumet-
ric-deviatoric strain-energy based coupled
elastoplastic damage and healing models
and computational algorithms have been
proposed recently in [26] for earth moving
processes.  The volumetric and deviatoric
elastic-damage-healing predictor and the
effective plastic corrector are implemented
within the RKPM meshfree codes.  
Numerical examples under earth excava-
tion, transport and compaction are pre-
sented in [26] to illustrate salient features
of soils such as shear band and partial 
recovery of soil stiffness due to com-
paction by the new two-parameter 
damage-healing models.  

Moreover, innovative strain-energy based
coupled elastoplastic hybrid isotropic
damage and healing models for partially
saturated soils have been developed and
implemented for numerical simulation of
earth pushing processes.  In particular,
change of effective stress due to matric
suction in the formulation is considered
and the governing incremental damage
and healing evolutions are coupled and
characterized through the effective stress
concept in conjunction with the hypothesis
of strain equivalence; cf. [27]. l

“ .... change of effective stress due to 
matric suction in the formulation 

is considered and the governing 
incremental damage and 

healing evolutions are coupled 
and characterized through the effective

stress concept in conjunction with the
hypothesis of strain equivalence.”
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This is an excellent mathematical book on error estimates for the Finite Element (FE)
method.  To the best of my knowledge, no other book covers the subject of FE error 
analysis in such a thorough and complete way.  The three authors, who are well known
mathematicians that have made seminal contributions to both the mathematical and 
engineering literature, should be congratulated for this important achievement. 

In the Preface, the authors explain their motivation for writing this book: “... we feel that
there is a need for a book that presents the main theoretical ideas of the FE method and
the analysis of its errors in an accessible way, and that demonstrates the interrelationship
between the theory and the computed numbers... Further, the book should require the min-
imum of pre-requisites for understanding the basic theory presented... Finally, it should ad-
dress the numerical computation of typical simple engineering problems...”

Being “accessible” is a relative term.  It is true that the book aims at attracting readers 
lacking formal mathematical education, and that the text includes engineering examples
that demonstrate the theory.  However, I would not say that this book is an easy reading
material for the average engineer who is interested in the theoretical aspects of the FE
method.  Large parts of this book are written in a mathematically technical style that 
requires mathematical maturity.  The style used in these parts is significantly more 
technical than that of some other major books on FEs, such as “The Finite Element
Method” by Hughes [Dover, 2000], “Numerical Solution of Partial Differential Equations by
the Finite Element Method” by Claes Johnson [Dover, 2008], as well as the two books by
Szabó and Babuška – “Finite Element Analysis” [Wiley, 1991] and “Introduction to Finite El-
ement Analysis: Formulation, Verification and Validation” [Wiley, 2011].  (The latter will be
reviewed in the next issue of IACM Expressions.)  It is perhaps slightly less mathematically
technical than “Finite Elements” by Oden et al. [Prentice-Hall, 1981] and certainly more 
accessible than "The Finite Element Method for Elliptic Problems" by Ciarlet [SIAM, 2002]. 

I think that the present book will be easily accessible only to those engineers, or 
engineering graduate students, who are very strongly mathematically oriented.  On the
other hand, this is an ideal book for graduate students in applied mathematics who are 
interested not only in the theory of FE error estimation but also in how it is applied in 
practice.  No doubt that for readers who do posses the necessary mathematical maturity
this book will be a great asset.  Such readers will not only be exposed to the state of the art
of FE error estimation theory, but will also learn how confidence in the numerical results
can be obtained from this theory.

Ivo Babuška                   John R. Whiteman        Theofanis Strouboulis 
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In order to present the basics of FE error estimation in a deep and thorough way, the 
authors restrict themselves to linear scalar elliptic PDEs.  More precisely, the book deals
only with linear elastostatics in 1D (rod in tension/compression), which is analogous to 
1D heat conduction, and with 2D heat conduction.  I think that this is a prudent choice, 
because it enables one to concentrate on the fundamental understanding of the basic 
theory.  This book paves the way for the reader to later understand FE error estimation in 
a more advanced context. 

The seven chapters can be viewed as divided into three groups: introductory material on
the FE method and on interpolation errors (chap. 1-4), a priori error estimates (chap. 5 and
6) and a posteriori error estimates (chap. 7).  Chapter 1 introduces the extremely important
notions of reliability of computations, validation and verification.  Chapter 2 discusses the
strong and weak forms of the problem and the equivalent minimization problem.  On pp.
26-27 the authors prove the equivalence of the weak formulation and the minimization
formulation; this is the first time I see an “elementary” proof for this equivalence that
does not require the technique of the calculus of variations.  Chapter 3 presents the
Galerkin FE method.  The shape functions discussed include piecewise linear and
piecewise parabolic functions.  The latter are hierarchical, not nodal, functions; their
advantages are explained (pp. 74-75). Benchmark problems are defined, which are 
referred to in later chapters of the book.  The chapter ends with a discussion on the
best approximation property.  Chapter 4 discusses interpolation and its error; this is a
topic in approximation theory which of course plays a vital role in FE error analysis. 

The four first chapters mentioned above occupy about half of the book and constitute 
an introduction to the main subject: error estimation.  Chapter 5 presents a priori error 
estimates in the energy norm.  The proof of the standard error estimate does not make 
a direct use of the best approximation property (as opposed to the classical Strang and 
Fix approach); the advantage is apparently in the potential to extend the proof to more
complicated cases. The error estimate is demonstrated for several examples in a clear
way.  Then error estimates for 2D problems involving geometrical singularities (e.g., 
reentrant corner) are discussed and applied to the benchmark problems.  See Fig. 1, which
is taken from the book. Chapter 6 deals with estimates for errors measured by functionals
different than the energy norm. Superconvergence (for the solution's derivative) in 1D and
2D is explained.  Local and global errors are discussed. See Fig. 2, taken from the 
book.  Pollution is only mentioned briefly since it is outside the scope of this book.

Chapter 7 discusses a posteriori error estimates, using the notions of error indicators
and error estimators.  The success of the error estimator is measured by the effectivity
index.  (Here I will give a single relating to the style of presentation: the effectivity index
is defined by the mathematical expression given by eq. (7.4c) on p. 219, in terms of
previously defined quantities, but it is not mentioned in the surrounding text.  Later it is
used in tables of results of numerical experiments.  An engineer that is not used to the
lack of textual explanations of such basic concepts may find the exposition difficult to
follow.)  The chapter includes a discussion on recovered functions, not as a tool for
flux-recovery methods but as a means of computing estimators.  The estimators dis-
cussed include (a) residual-based estimators (with or without flux jumps), (b) subdo-
main (patch) estimators, (c) averaging-based estimators (including the celebrated ZZ
estimator), and (d) the Richardson estimator.  Section 7.3 is a very nice summary that
provides a comparison of the properties of all these types of estimators. 

The book is well structured. Every chapter starts with a nice short Summary that 
surveys the content of the chapter.  The book contains many examples, which are 
usually special cases for the theory discussed.  It is also scattered with exercises 
– some of them purely mathematical (e.g., to prove a certain inequality), and some are
more engineering-like, with numerical values and even engineering units.  Quite a few 
figures with sketches and graphs as well as tables with results of examples are provided,
which illustrate the theory very effectively.  Some sections end with interesting “morals” 
that point to practical conclusions drawn from the discussion and examples.

In summary, this is a superb book on FE error analysis, that is well suited for applied 
mathematicians, and partly also for readers with engineering background provided that
they posses sufficient mathematical maturity, or if the book is used as a course textbook
with appropriate guidance.". l

Figure 1:
Neighborhood of a 
geometrical singularity
(reentrant corner), and
associated notation. 
This figure appears in
the book as Fig. 5.5 
on p. 170

Figure 2:
Illustration of local and
global errors. 
This figure appears 
in the book as 
Fig. 6.3 on p. 187
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Third International Symposium on Third International Symposium on 
Computational Mechanics (ISCM III)Computational Mechanics (ISCM III)

in conjunction within conjunction with

Second Symposium on Second Symposium on 
Computational Structural Engineering (CSE II)Computational Structural Engineering (CSE II)

The third International Symposium on Computational
Mechanics (ISCM III) in conjunction with second 
Symposium on Computational Structural Engineering
(CSE II) was held in National Taiwan University,
Taipei, Taiwan during December 5-7, 2011.  The 
objectives of ISCM III-CSE II are to discuss the 
latest development and application of computational
methods in all aspects of engineering and science
with a special emphasis on mechanics.

When counted from the side of the ISCM, this conference  was the third in the
sequence organized by the International Chinese Association for Computational
Mechanics (ICACM), of which Prof. Mingwu Yuan has been the President.  The
first ISCM was held under the effort of Prof. Yuan in Beijing in 2007. Following
the first successful meeting, the ICACM board decided to hold the ISCM every
two years.  The second ISCM was held in Hong Kong and Macau in 2009 in col-
laboration with EPMESC XII by Prof. Andrew Leung of City University of Hong
Kong and Prof. Vai Pan Iu of University of Macau.  The aim of the ISCM is to
bring together scientists in the computational mechanics community to exchange
the latest ideas of researches through the symposium.

On the other hand, the first International Symposium on Computational Structural
Engineering (abbreviated as CSE) was held in Shanghai in 2009, co-organized
by Tongji University and Vienna University of Technology.  The aim of CSE is 
to provide a forum for scientists, developers, and engineers to review novel 

research findings, to assess the suitability of
new models, and to evaluate the robustness 

of advanced computa-
tional methods for 
investigation of the 
life-cycle of structures.

Association of Computational Mechanics         T

Figures 1, 2 & 3:
ISCM III-CSE II

Conference Organizers: 
YB Yang - ybyang@ntu.edu.tw

President
LJ Leu - ljleu@ntu.edu.tw

Vice President 
CS David Chen - dchen@ntu.edu.tw

Secretariat General
of Association of Computational 

Mechanics Taiwan (ACMT)

Figures 4 & 5:
ISCM III-CSE II Conference Venue

Figures8, 9, 10 & 11:
Plenary speeches by:

Prof. Wing-Kam Liu Prof. Jun-Zhi Cui            Prof. Subrata Mukherjee Prof. JS Chen

Figure 6:
Welcome speech by
the Conference Chair,
Prof. YB Yang

Figure 7:
Open plenary by
Prof. Herbert Mang
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Judging from the fact that the ISCM and CSE have some overlapping in topics
and participants, we therefore decided to have a joint conference for them in
Taipei, Taiwan.  The joint event attracted more than 300 participants, coming
from 20 countries and regions, including Austria, Australia, Brazil, China, 
Germany, Greece, Hong Kong, India, Indonesia, Iran, Japan, Korea, Macao,
Netherlands, Singapore, Slovakia, Taiwan, U.K., U.S.A., Vietnam.

The joint conference featured 5 plenary lectures, 6 semi-plenary lectures, 
56 invited talks and 192 regular presentations.  The plenary speeches were
given by Prof. Herbert Mang (Vienna University of Technology), 
Prof. Jun-Zhi Cui (Chinese Academy of Engineering), Prof. Wing-Kam Liu
(Northwestern University), Prof. Subrata Mukherjee (Cornell University) and
Prof. Jiun-Shyan Chen (University of California, Los Angeles).  
The semi-plenary speeches were given by Prof. J. N. Reddy (Texas A&M 
University), Prof. Manolis Papadrakakis (National Technical University of
Athens), Prof. G. Yagawa (Tokyo University), Prof. Jiann-Wen Woody Ju 
(University of California),  Prof. Ping Hu ( Dalian University of Technology) 
and Prof. Xiong Zhang (Tsinghua University).

One of the biggest events in this conference was the organization of the 
Minisymposium in Honor of the 70th Birthday of Prof. Herbert A. Mang, former
President of the Austrian Academy of Sciences and Professor of Vienna 
University of Technology. Parallel to the minisymposium, a Birthday Celebration
Party co-organized by Prof. Josef Eberhardsteiner (Vienna University of 
Technology) was held at 85F in Taipei 101 to celebrate Prof. Mang’s 
70th Birthday.

The ISCM III-CSE II was a great success and we thank all the participants 
all over world to make it a truly memorable event. The great supports and 
participation from the officials of IACM and its affiliated associations, 
Prof. G. Yagawa, Prof. Wing-Kam Liu, Prof. MW Yuan, Prof. JS Chen, 
Prof. Manolis Papadrakakis, are very much appreciated. l

        Taiwan (ACMT)

for all inclusions under ACMT please contact:
YB Yang

ybyang@ntu.edu.tw

Figures 12, 13 14, 15 & 16:
Selected photos taken from
Prof. Herbert A. Mang 70th
Birthday Celebration Party 
at Taipei 101.

(From one of our plenary speakers from USA) I rank ISCM III-CSEII top 10% 
of all the international conferences that I have ever attended. Congratulations!
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USACM announces the establishment of
the J. Tinsley Oden Medal to be given in
recognition of outstanding and sustained
contributions to computational science,
engineering, and mathematics.  These
contributions shall be in the form of im-
portant research results that significantly
advance the understanding of theories
and methods of computational science,
engineering and mathematics that have
broad applicability to computational
mechanics.  This award replaces the
USACM Computational and Applied
Sciences Award.

A founding member and past president of
both USACM and IACM, J. Tinsley Oden
is also the founding Director of the Insti-
tute for Computational Engineering and
Sciences (ICES) at the University of
Texas, Ausitn.  The Institute supports
broad interdisciplinary research and

academic programs in computa-
tional engineering and sciences,
involving four colleges and 18
academic departments within
UT Austin.  He is an author of
over 600 scientific publications:
books, book chapters, confer-
ence papers, and monographs,
including 50 books he has au-
thored or edited.  These include
Contact Problems in Elasticity,
the six-volume series: Finite
Elements, An Introduction to the
Mathematical Theory of Finite
Elements, and several textbooks,
including Applied Functional
Analysis and Mechanics of
Elastic Structures, and 

USACM Announces New Award

A Posteriori Error Estimation in Finite
Element Analysis.  His most recent book,
Introduction to Mathematical Modeling:
A Course in Mechanics, was published
in 2011.  His treatise, Finite Elements of
Nonlinear Continua, published in 1972,
subsequently translated into Russian,
Chinese, and Japanese and published
in a Dover edition in 2007, is cited as
having not only demonstrated the great
potential of computational methods for
producing quantitative realizations of
the most complex theories of physical
behavior of materials and mechanical
systems, but also established computa-
tional mechanics as a new intellectually
rich discipline that was built upon deep
concepts in mathematics, computer
sciences, physics, and mechanics. 

Dr. Oden is a member of the U.S. Na-
tional Academy of Engineering and the
American Academy of Arts and Sciences.
He is a representative of IACM on the
IUTAM Working Party 5 on Computa-
tional Mechanics and serves on numer-
ous organizational, scientific and advisory
committees for international conferences
and symposia.  Oden has received many
honors and awards for his research and
writings, including six honorary doctor-
ates, the IACM Gauss-Newton Medal,
the USACM von Neumann Medal, the
Zienkiewicz Medal, the von Karmen
Medal, the Timoshenko Medal, and many
others.   He is an Editor of Computer
Methods in Applied Mechanics and
Engineering and serves on the editorial
board of 27 scientific journals. l

USACM AnnouncementsUSACM Announcements

m 12th U.S. National Congress on Computational Mechanics (USNCCM12) will be held July 22-25, 2013, 
in Raleigh, NC, USA. Proposals for minisymposia are currently being accepted.  .  
Please see the website (12.usnccm.org) for further details.

m Plan to attend the 22nd International Workshop on Computational Mechanics of Materials (IWCMM XXII), 
September 24-26, 2012 in Baltimore, MD, USA (http://iwcmm22.jhu.edu/).

m Workshop on Nonlocal Damage and Failure: Peridynamics and Other Nonlocal Models, 
will be held March 11-12, 2013, in San Antonio, TX, USA.  The website (nfd2013.usacm.org) 
contains more information.

Figure 1:
Professor J. Tinsley Oden
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U S A C M  P a r t n e r s  w i t h  S I A M  U S A C M  P a r t n e r s  w i t h  S I A M  

o n  S I A M  U Q 12  o n  S I A M  U Q 12  

C o n f e r e n c eC o n f e r e n c e

The USACM served as a cooperating organization with SIAM on the 2012 SIAM Conference on 
Uncertainty Quantification (SIAM UQ12), which was held April 2-5, 2012 in Raleigh, NC.  
Other cooperating organizations were the American Statistical Association (ASA) and the Statistical and 
Applied Mathematical Sciences Institute (SAMSI). This was the first-ever conference dedicated entirely to 
the emerging field of UQ.  Roger Ghanem (University of Southern California) served as the USACM 
representative on the organizing committee, and USACM members received a discounted registration price.  

The conference was a tremendous success; the four-day length and 487 registered attendees far 
exceeded the numbers originally planned for.  The format included six plenary lectures, six mini-tutorials, 
nine parallel sessions of technical presentations over the four days, an evening poster session, and an
evening “forward-looking” panel session.  There was also a meeting of the SIAM Activity Group on UQ, 
which is cooperating closely with the new USACM UQ Specialty Committee.  SIAM UQ will now become 
a biennial conference series. USACM will again be cooperating with SIAM on SIAM UQ14, 
to be held in Spring,2014. l.

for all inclusions under USACM please contact
info@usacm.org

Figure 2:
Lecture presented at Mul-
tiscale Methods and Vali-
dation in Medicine and
Biology I: Biomechanics
and Mechanobiology

Figure 3:
Informal discussion during a break at Multiscale Methods and 

Validation in Medicine and Biology I: Biomechanics and Mechanobiology

Thematic Conference: 
Multiscale Methods and Validation 

in Medicine and Biology I

USACM held its first thematic conference on Multiscale Methods and 
Validation in Medicine and Biology I: Biomechanics and Mechanobiology, 
at the Embassy Suites in Burlingame, CA, February 13-14, 2012.  
The conference, organized by Professors Suvranu De, William Klug, 
and Wing Kam Liu, hosted a total of 92 attendees from the US, Europe 
and Asia.  The two-day meeting featured over 70 presentations in the 
following areas:

Mechanobiology at the molecular, cellular, tissue and organ levels, 
Multiscale mechanics of biological macromolecules in health and disease
Multiscale biofluid mechanics and mass transport, 
Multiscale mechanics of biological membranes, films and filaments, 
Multiscale mechanics of adhesion, 
Biomolecular motors and force generation, 
Mechanics of bionanoporous materials

Two parallel sessions were held on each day to accommodate the talks.  Each talk 
was 20 minutes in length and each session featured a 30-minute Round Table
Discussion period. In addition, seven poster presentations were made.  During the 
first day lunch, Dr. Grace Peng from the National Institutes of Health
made a presentation on ‘Thoughts on the Future of Multiscale Modeling’.
With an opening reception, conference dinner, and lunches each day,
there was ample time for participants to discuss the research being 
presented.  l

A second conference is planned for 2014 in the San Francisco Bay Area.
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20th UK ACME
Conference on Computational Mechanics in Engineering

The UK Association for Computational Mechanics in Engineering (ACME) was
founded with the aims of promoting research in computational mechanics in

engineering within the UK, and establishing formal links with similar organisations
in Europe and the International Association for Computational Mechanics (IACM).
The main activity of ACME involves the organisation of the Annual Conference,
which has been held in a UK university since 1993. 

The 20th ACME Annual Conference was held at the School of Mechanical, 
Aerospace and Civil Engineering, the University of Manchester from 
27th-28th March 2012.  The Conference attracted over 100 researchers from 
over 35 universities.  Among the participants, 15 were from outside UK, 
including Australia, China, Ireland, Netherland, Spain, Turkey and USA, which
added a strong international flavour to this UK national conference. 

During the two-day conference, 84 presentations were given on a wide range 
of topics, from computational solid mechanics to CFD and fluid-structure 
interaction, from computational structural engineering to geomechanics and 
wave propagation, from materials constitutive modelling to complicated damage
and fracture behaviour under impact and fire, from newest numerical methods 
and algorithms to advanced application of complicated materials, structures 
and processes in different scales.  Four invited plenary lectures were given, by 
Prof. Guirong Liu from Cincinnati, USA on smoothed finite element methods, 
Associate Prof. Chongmin Song from Sydney, Australia on scaled boundary finite
element method, Prof. Keneth Morgan from Swansea, UK on adaptive remeshing 

Figure 1:
(above left and right)
On the plenary lecture of 
Prof Rene de Borst

Figure 2:
Lively discussion after 
Prof Guirong Liu’s plenary lecture
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of CFD problems, and Prof. Rene de Borst from Glasgow, UK on multiscale 
fracture modelling, respectively. A total of 88 four-page papers are published in 
the conference proceedings (both online and paperback).

At the end of the Conference, four prizes were awarded to young researchers 
who presented the best papers, selected by a judging panel comprising senior 
academics.  The Crisfield Prize and the Best Postdoctoral Researcher Award went 
to Dr Hou Man from the University of New South Wales, the Best PhD Awards to 
Mr Graeme Edwards from Glasgow University and Mr Jack Hale from Imperial 
College of London, and the Zenkiewicz Best PhD Thesis Prize to Dr Sundararajan
Natarajan from Cardiff University.

The Conference was preceded by the 2nd ACME School on the afternoon of 
26th March, in which three lectures on special topics were given to over 50 
participants, by Prof. Carlo Sansour from Nottingham, Prof. Stephane Bordas 
from Cardiff and Dr Dongfang Liang from Cambridge, respectively.

After the conference, Prof Carlo Sansour, the President of ACME UK, commented
that “the meeting was a great success” and congratulated 
Dr Zhenjun Yang for “the excellent organisation of the 
conference and in particular, the good selection of the 
keynote speakers.” l

Dr Zhenjun Yang
University of Manchester

for all inclusions under ACMA UK please contact
Carlo Sansour

carlo.sansour@nottingham.ac.uk

Figure 3:
The Crisfield Prize and the Best
Postdoctoral Researcher Award
winner, Dr Hou Man from
UNSW 

Figure 4:
The Best PhD Award winner, 
Mr Jack Hale from Imperial 
College of London

Figure 5:
The Best PhD Award winner, 
Mr Graeme Edwards from 
Glasgow University

Figure 7:
Prof Carlo Sansour, Dr
Chongmin Song and Dr
Zhenjun Yang

Figure 6:
Conference dinner in the magnificent old Christie Library
(1898) of the University of Manchester
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65th Birth anniversary of
Sergio Idelsohn

MECOM 2012 will be inaugurated on November 13th, this time in the beautiful 
northern Argentine city of Salta.  Salta, a city famous for its empanadas (pasties),
wines and folklore, among so many other things, lies at a point where the mountains

meet with the forest, leaving a dream valley behind.  There, re-
searchers from many parts of the world will gather to share good
moments and exchange scientific opinions.  On this occasion, we
are fortunate to honor one of the distinguished citizens that Ar-
gentina has given to the world on his 65th birth anniversary, our
dear friend, colleague and professor, Sergio Rodolfo Idelsohn
Barg.  It is difficult to describe in a few words the contribution 
that Sergio has made over his academic life, which includes 
almost two thirds of his lifetime.  However, we have accepted the 
challenge.

Sergio Idelsohn is an Argentine scientist specialized in the field of computational 
mechanics.  He started his career in solid mechanics when, as a PhD student at the
University of Liege, he came in contact with plates and shells.  Later, back in 

Argentina, he focused on applications of the finite elements
method in heat transfer and fluid mechanics, areas in which he
has been working up to the present.  However, throughout his 
active scientific career, he deeply explored different methods 
and made valuable contributions to each of them, such as finite
volume, finite elements and, lately, particle methods.  In his 
opinion, the latter methods are the ones that best adapt to 
problem solving in fluid mechanics, where fluids interact with a
free surface, when the mixture of diverse fluids is simulated or
when they interact with some structures. 

Dr. Sergio Idelsohn was born in the city of Paraná on November
15, 1947.  He got his degree of Mechanical Engineer at the 
National University of Rosario (UNR) in 1970 and his Ph D in 
Engineering at the University of Liege, Belgium, in 1974.

He has held several positions, such as Tenured Professor at the UNR since 1989,
CONICET Scientific Researcher since 1981, reaching the maximum researcher
category (Senior Researcher) at a very early age.  He was Director of the Regional
Center of Research and Development (CERIDE), Santa Fe (1985-1987 and 2003-
2006).  He was Guest Professor at the Institute for Advanced Study at Princeton
(USA); at the University “Pierre et Marie Curie” (France), and at the Polytechnic 

University of Catalonia (Barcelona, Spain).  From 1985 to 2005,
he was president of the Argentine Association of Computational
Mechanics, an organization that had its origin in the visionary
ideas of several Argentine scientists of that time, with Sergio 
Idelsohn among them.  Since 1980, when the city of Santa Fe
adopted him as a citizen, he worked hard to create, establish 
and strengthen the current International Center for Computational
Methods in Engineering.  Another of Sergio’s values is his ability
to make friends, which helped him gain the affection of many of
the authors of the most prestigious books published in the field 
of Computational Mechanics, professor Olgierd Zienkiewicz
among them. 

Figure 1:
Sergio Idelsohn

Figure 2:
Sergio with 

Olek Zienkiewicz

Figure 3:
Sergio Idelsohn in front of

his Real Time project

for all inclusions under 
AMCA

please contact:
Victorio Sonzogni 

sonzogni@intec.unl.edu.ar
http://amcaonline.org.ar

Argentine Association for Computational Mechanics
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At present he is a researcher at the Institució
Catalana de Recerca i Estudis Avançats
(ICREA), developing his activities at the 
International Center for Numerical Methods in
Engineering, (Centro Internacional de Métodos
Numéricos en Ingeniería, CIMNE), Barcelona,
Spain.  Every year, Sergio and his wife, Lelia
Zielonka, are welcome in Argentina, and 
particularly Santa Fe, where they stay for about
two months.  Lelia was the secretary at CIMEC
during all the years that they lived in Santa Fe
most of the time.  During those two months, Dr
Idelsohn works as Professor at the Faculty of 
Engineering and Hydrological Sciences of the
National University of the Littoral in Santa Fe.  
He has published more than one hundred 
scientific articles in international journals and is
the author of several book chapters, such as
Chapter 9 in Implicit Finite Element Methods (1984).  In 1987 he received one of the
most important awards in his scientific life, the Houssay award, a prize granted to the
author of the best scientific works conducted in Argentina.  He was elected “Fellow” 
of the American Academy of Mechanics in 1996 and of the International Association 
of Computational Mechanics in 1998.  In 1993 he received the Konex Award in the
field of Industrial, Chemical and Electromechanical Engineering. 

He also received the Award of the National Academy of Sciences of Argentina in 
1997 and of the International Association of Computational Mechanics in 2002.  
In 2006 he was granted the AMCA Award of the Argentine Association of Computa-
tional Mechanics for his sustained research, teaching, and professional activities.  
In 2007 he received the Elsevier Scopus Award for the number of times his works
were cited in the previous ten years.  In 2009 he was given the Sociedad Española 
de Métodos Numéricos en Ingeniería (SEMNI) Award, in recognition to a professional
and international trajectory in the Hispanic speaking world.  In February 2010 the 
European Research Council gave him a grant worth millions to develop numerical
simulation systems to perform real-time calculations. 

As Professor Idelsohn states, the challenge lies in a change of paradigm in the way 
of thinking about the problems.  “Although computers are very fast at present, 
calculations in engineering take between 10 and 20 hours.  If we need to calculate, 
for example, the consequences of a crack in a dam, these periods are unacceptable.
Therefore, the project that received ERC funding consists of doing the calculations 
in real time.  We will not need to wait for so many hours for the work of a computer
while water flows out”, explained the researcher during an interview in Santa Fe.
Then he asserted that: “With this method we might do the calculations at the same
time that the dam failure occurs.  Thus, determining how water will descend, where 
it will reach, whether the nearby cities will have to be preventively evacuated, is 
very useful to prevent the contingency.  The advantage of real time calculation lies 
in those cases in which natural phenomena occur very rapidly, and rapid decisions
need to be made as well.  Our work proposes a method for doing those calculations 
in real time.  

To conclude, happy birthday dear Sergio, and many thanks for all that you have given
to us. l

by
Norberto M. Nigro

CIMEC-INTEC-CONICET-UNL
email: nnigro@intec.unl.edu.ar
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Annual Conference

The 17th JSCES’s Annual Conference on Computational Engineering and Science,
chaired by Prof. N. Takano (Keio Univ.), was held on May 29-31, 2012, at Kyoto Ky-
oiku Bunka Center (Kyoto, Japan).  The conference lasted three days and was at-
tended by about 560 participants.  About 400 papers with full lectures were presented
by researchers, graduate students and practitioners in the conference composed of 8
tracks and 36 minisymposia. Among them, two special symposia were organized by
the conference organizing committee for intensive discussions for specific fields of re-
search. One is “Disaster Prevention/Reduction ~Present Situation and Proposition in
Computational Mechanics~” (Figure 3) and the other is “Innovation of Materials for
Structures and Applications for Manufacturing”.  The plenary talk was given by Profes-
sor Olivier Pironneau at the University of Paris VI (Pierre et Marie Curie) who pre-
sented the paper “Optimal Shape Design for Airplane Aerodynamics”. He is also the
recipient of “The JSCES Grand Prize 2012” for his outstanding contributions in the
field of computational engineering and sciences (Figure 4).

The JSCES took this conference as an occasion to promote young researchers by
awarding “Best Paper Award” to speakers with respectable presentations and papers,
and “Visualization Award” to speakers with illustrative figures placed in their papers.
Also, five sponsoring software venders and distributers provided separate “Lunch-on
Seminars“ during lunchtime, in which their activities were presented to the audience
being lunch boxes served. All these events in this conference were quite successful.
The significance of JSCES’s annual conference has been determined as an estab-
lished setting for the exchange of ideas in the field of computational engineering and
science, and for the enlightenment of state of the art in this field.  The effort will con-
tinue to have the next year’s conference in Tokyo, June 2013. l
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The Japan Society for Computational Enginering and Science

The JSCES, which was incorporated
under a new regulation about 

government-affiliated public corporations
two years ago, hold the third general
assembly meeting of the JSCES in May
24, 2012.  On this occasion, Dr. Koichi
Ohtomi (Toshiba Corporation) stepped
down as the President of the JSCES,
and Dr. Kazuo Kashiyama (Professor,
Chuo University) took over it.  

Prior to the deliberation in the assembly,
a special symposium was held, in which
Dr. Kozo Fujii (Professor, Institute of
Space and Astronautical Science, Japan

Figure 1:
Special lecture by 

Professor Kozo Fujii 
in the JSCES Symposium

Figure 4:
Prof. O. Pironneau (recipient of The JSCES Grand Prize 2012) (30th of May, 2012)

Figure 3:
Special symposium 

“Disaster Prevention/
Reduction

~Present Situation and
Proposition in 

Computational Mechanics~”

Aerospace Exploration Agency:
JAXA/ISAS) presented a plenary talk 
entitled “Product Innovation with
HPC/CFD ~ Concept Revolution 
from Geometry Design to Control 
Device Design~” (Figure 1).

On the same day, inviting Dr. M. Shoji
(the second president), who founded
Shoji Medal, we had the award 
ceremony for awarding JSCES prizes 
to senior and young researchers and
practitioners.  This year’s recipients 
are:

General   Assembly    MeetingGeneral   Assembly    Meeting
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Prof. Norio Takeuchi (The
JSCES Award), Dr. Keizo Ishii
(The JSCES Award),
Prof. Takahiro Yamada (Kawai
Medal), Dr. Ryusaku Sawada
(Shoji Medal), Dr. Kazuki
Shibanuma (Outstanding Paper
Award), Dr. Zixian Zhang 
and Prof. Ichiro Hagiwara 
(Outstanding Paper Award),
Dr. Ikumu Watanabe 
(Young Researcher Award),
and Dr. Takeshi Akita (Young Researcher
Award) (Figure 2). l
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Due to the Higashi Nihon Daishinsai
(Great East Japan Disaster), many 
important events planned for the first 
half of the last year were canceled.  In
particular, a plenary lecture at the 16th
JSCES’s Annual Conference was post-
poned until December 6, 2011, on which
the JSCES could have the opportunity 
to organize “the 1st International Forum
for Nonlinear Computational Solid 
Mechanics”.  In this special meeting,
Professor Peter Wriggers (Leibniz 
Universitaet Hannover, German) 
presented the paper “3D error controlled
adaptive multiscale extended finite 
element methods for crack simulations”
(co-authored by P. Wriggers, 
S. Loehnert, D.S. Mueller-Hoeppe, 
M. Holl, C. Hoppe, H. Clasen) as a 
plenary speaker and was awarded  
The JSCES’s Grand Prize 2011 after 
his lecture (Figure 5).  In the same
forum, two invited speakers gave their
talks about the recent trends and 

Figure 2:
Group shot of recipients of The JSCES Award, Kawai Medal, 
Shoji Medal, Outstanding Paper Award and Young Researcher Award

Figure 5:
Prof. P. Wriggers (recipient
of The JSCES Grand Prize
2011) with Prof. K. Ohtomi 
(former President ofJSCES) 
(6th of December, 2011)

Figure 6:
Group shot of participants of
the 1st International Forum
for Nonlinear Computational
Solid Mechanics (6th of De-
cember, 2011)

advances in multiscale modeling and
analyses. One was “Multi-scale struc-
tural health monitoring: challenges for
microcrack identification” presented by
Prof. Tmonari Furukawa (Virginia 
Polytechnic Institute and State
University, USA) and the other
“Multiscale analysis: numerical
material testing with micro-
scale information and material
modeling” by Prof. Kenjiro 
Terada (Tohoku University). 
Figure 6 shows a group shot 
at the convivial party after the
forum. l

International Forum & the JSCES’s Grand Prize for 2011

for all inclusions under JSCES please contact:
Kenjiro Terada

tei@civil.tohoku.ac.jp

JSCES Future Events

In this manner, the JSCES, which has over 800 IACM members, is directing various
international activities as an IACM affiliated society in Japan, promotes exchanges in
individual associations and societies on computational mechanics. This year, the
JSCES plans to organize the Sixth Korea-Japan Workshop in Kyoto, Japan and the
first Spain-Japan Workshop in Barcelona, Spain. The JSCES will also provide a spe-
cial educational event named “Summer School on Basics and Applications of Flow
Simulation by FEM”. These events will be reported in the next issue. l
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JACM New Elected Council

The Japan Association for Computational Mechanics (JACM) elected a new
executive council in March 2012.  After three years as president of JACM, 

Prof. Noriyuki Miyazaki, Kyoto University left the board.  The new executive 
council members for 2012-2014 are as follows :

President : 
Prof. Shinobu Yoshimura, 
The University of Tokyo, 
yoshi@sys.t.u-tokyo.ac.jp, 
http://save.sys.t.u-tokyo.ac.jp/prof/index.html

Vice Presidents : 
Prof. Takayuki Aoki, 
Tokyo Institute of Technology,
taoki@gsic.titech.ac.jp, http://www.sim.gsic.titech.ac.jp/English/Member/taoki.html,
and
Prof. Shinji Nishiwaki : Kyoto University, 
shinji@prec.kyoto-u.ac.jp, 
http://www.osdel.me.kyoto-u.ac.jp/english/members/index.html

Japan Association for Computational Mechanics 

Figure 1:
Prof. Shinobu Yoshimura

(President)

J A CM  N ew s
JACM officially started on December 17, 2002.  The purpose of JACM is to 
establish the communication network over the scientists related to 
computational mechanics.  The JACM differs from ordinary  societies, 
but is rather a loosely coupled union of 26 societies in Japan related to 
computational mechanics. Please visit the web-site at
http://www.sim.gsic.titech.ac.jp/jacm/index-e.html to see our activities.

In 2012, JACM supports two international events held in Japan.  

The first event was “Lectures on Computational Fluid-Structure Interaction” 
held on 5-6 March, 2012 at University of Tokyo, Japan, whose co-chairs are 
Professors Yoichiro Matsumoto of University of Tokyo, Tayfun Tezduyar of 
Rice University, Shinobu Yoshimura and Kenji Takizawa of Waseda University,
Japan.  The other lecturers are Profs. Yuri Basilevs of UCSD and Takeo 
Kajishima of Osaka University, Drs. Tomohiro Sawada of AIST, Satsuki 
Minami of University of Tokyo and Satoshi Ii of Osaka University. 
Over 90 participants including researchers and students from academia as 
well as engineers from industries attended the workshop.  

The workshop had two objectives.  
The first day is an “FSI Exchange” where the lecturers focus on computational
FSI techniques and exchange information on what challenges are faced and how
the challenges addressed.  
The second day of the workshop was short-course style, where the lectures
focus on “FSI Fundamentals”.  All the lectures are very stimulating and 
informative not only for the participants but also for the lecturers.
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Figure 5:
Profs. Yoichiro Matsumoto, Tayfun Tezduyar 

and Takashi Yabe (Tokyo Institute of Technology)
in Panel Discussion of FSI Workshop

for all inclusions under JACM  please contact:
Shinobu Yoshimura 

jacm-jim@save.sys.t.u-tokyo.ac.jp

Figure 2:
Prof. Takayuki Aoki 
(Vice-president)

Figure 3:
Prof. Shinji Nishiwaki 
(Vice-president)

Figure 4:
Prof. Hiroshi Okada 
(Secretary General)

Figure 6:
Night View of 
Kobe International Port

The second event is International 
Computational Mechanics Symposium 
2012 to be held in 9-11 October, 2012 in 
Kobe, which is 25th anniversary event of 
Computational Mechanics Division of Japan 
Society of Mechanical Engineers.  

Besides a number of mini-symposia, 
it will have invited plenary talks by 
Professors Jack Dongarra of University 
of Tennessee, J. S. Chen of UCLA, Roger 
Ohayon of CNAM and Genki Yagawa of Toyo 
University.  The symposium also includes a 
technical tour to the world’s fastest supercomputer, K-
computer.  Deadline of Extended 
Abstract submission is July 15, 2012.  

In more detail, please visit the website,
http://www.jsme.or.jp/conference/cmdconf12/index.html l

Secretary General :
Prof. Hiroshi Okada : 
Tokyo University of Science,
hokada@rs.noda.tus.ac.jp, 
http://www.rs.noda.sut.ac.jp/me/laboratories/okada_laboratory.html   
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1 - 5 July 2012

8 - 13 July 2012

9 - 13 July 2012

17 - 20 July 2012

6 - 10 Aug 2012

9 - 10 Aug 2012

4 - 9 Sept 2012

10 - 13 Sep 2012

10 - 14 Sept 2012

18 - 21 Sept 2012

24 - 26 Sept 2012

2 - 5 Oct 2012

9 - 11 Oct 2012

23 - 25 Oct 2012

13 - 16 Nov 2012

24 - 28 Feb 2013

11-12 March 2013

29 - 30 May 2013

3 - 5 June 2013

12 - 14 June 2013

17 - 19 June 2013

22 - 25 July 2013

3 - 5 Sept 2013

18 - 20 Sept 2013

9 - 11 Oct 2013

EngOpt 2012 : 3rd Int. Conf. on Engineering Optimization

Venue: Rio de Janeiro, Brazil Contact: http://www.engopt.org
WCCM 2012 - 10th World Congress on Computational Mechanics

Venue: Sao Paulo, Brazil Contact: http://www.wccm2012.com
ESMC 2012 8th European Solid Mechanics Conference

Venue: Gratz, Austria Contact: www.esmc2012.tugraz.at
VECPAR 2012 : High-Performance Computing for Computational Science

Venue: Kobe, Japan Contact: http://nkl.cc.u-tokyo.ac.jp/VECPAR2012/
CLAM 2012 : IV Congreso Latinoamericano de Matemáticos

Venue: Cordoba, Argentina Contact: http://www.famaf.unc.edu.ar/clam2012/
CADI 2012 : I Congreso Argentino de Ingeniería

Venue: Mar del Plata, Argentina Contact: info at cadi.org.ar
ECT2012: 8th Int. Conf. on Engineering Computational Technology

Venue: Dubrovnik, Croatia Contact: http://www.civil-comp.com/conf/ect2012.htm
ICPP : International Conference on Parallel Processing

Venue: Pittsburgh, USA Contact: http://www.icpp2012.org
ECCOMAS 2012 - 6th European Cong. on Computational Methods in Applied Science & Eng

Venue: Vienna, Austria Contact: http://eccomas2012.conf.tuwien.ac.at
FDM2012 : Fracture and Damage Mechanics

Venue: Xi'an City, China Contact: http://fdm.engineeringconferences.net/
IWCMM XXII  - 22nd International Workshop on Computational Mechanics of Materials

Venue: Raleigh, NC, USA Contact: http:12.usnccm.org
CAIM 2012 : III Congreso Argentino de Ingeniería Mecánica

Venue: Buenos Aires, Argentina Contact: http://www.caim2012.frba.utn.edu.ar/
International Computational Mechanics Symposium 2012 

Venue: Kobe, Japan Contact: http://www.jsme.or.jp/cmd/
VII COBIM : Congreso Bolivariano de Ingenieria Mecanica

Venue: Cusco, Perú Contact: vii.cobim at pucp.edu.pe
MECOM 2012 : X Congreso Argentino de Mecánica Computacional

Venue: Salta, Argentina Contact: http://www.unsa.edu.ar/mecom2012
FEF 2013 : Finite Elements in Flow Problems 

Venue: San Diego, USA Contact: http://www.tafsm.org/TH70/
Workshop on Nonlocal Damage and Failure: Peridynamics and Other Nonlocal Models 

Venue: San Antonio, USA Contact: http://nfd2013.usacm.org
MARINE VI: Marine Engineering.

Venue: Hamburg, Germany Contact: http://congress.cimne.com/marine2013
International Conference on Adaptive Modeling and Simulation - ADMOS 2013

Venue: Lisbon, Portugal Contact: http://www.lacan.upc.edu/admos2013 
SEECCM III : South-East European Conference on Computational Mechanics

Venue: Island of Kos, Greece Contact: http://www.seeccm2013.org.
COUPLED V: Coupled Problems in Science and Engineering.

Venue: Ibiza, Spain. Contact: http://congress.cimne.com/coupled2013
NCCM12 - 12th U.S. National Congress on Computational Mechanics

Venue: Baltimore, USA Contact: http://iwcmm22.jhu.edu/
COMPLAS XII: Computational Plasticity. Fundamentals and Applications. 

Venue: Barcelona, Spain. Contact: http://congress.cimne.com/complas2013
PARTICLES III: Particle-based Methods. Fundamentals and Applications. 

Venue: Stuttgart, Germany. Contact: http://congress.cimne.com/particles2013
MEMBRANES V: Textile Composites and Inflatable Structures. 

Venue: Münich, Germany. Contact: http://congress.cimne.com/membranes2013

confer ence d iar y  p lanner

p ess o s 3 _ p ess o s 0 q d /06/ 0 30 age 6




