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How can IACM contribute to improving the global economy?

Before we can answer this question we have to realize that
IACM is viewed by many as just a scientific organization
whose mission is simply to foster the advances in an
(apparently) narrow field.

The fact is that scope of computational mechanics encom-
passes all theoretical and applied areas in engineering and
applied sciences. All products and processes that are
designed and manufactured by industry, in the broad sense,
make use of simulation technology emanating from
computational mechanics disciplines. The same applies

for the methods used for assessing the safety of constructions,
vehicles and infrastructure, and the techniques for predicting
the evolution of social and economical models, or the methods
and devices for studying the behavior of the human body and
other bio-systems, just to name a few.

It is therefore obvious that the knowledge emanating from com-
putational mechanics can have a big impact on the procedures
and tools that will be used for obtaining better, safer and more
economical products and systems in the next decades.

Computational mechanics techniques can also be applied

as a key ingredient in decision support systems, helping the
definition of urban and rural areas which are sustainable from
the point of view of energy, water resources and social-
economic balance. Studies of this kind are essential in the
development of many cities, regions and countries in the world.

A non-negligible contribution of the IACM to the world economy
are.the many conferences, workshops and workshops organized
yearly.by its members around the world...Indeed.IACM.is, at
the same time, a global and a local organization. It has 41
affiliated associations representing 53 countries worldwide.
Each of these associations is active in promoting national
conferences covering general and specialized topics in compu-
tational mechanics. This adds.to-the larger conferences.on
computational-solid and fluid mechanics organized by regional
organizations such as ECCOMAS, APCOM and USACM. It

is remarkable that all together over fifty meetings related to
computational mechanics were organized worldwide in 2011.

The summit meeting of the IACM is the World Congress for
Computational Mechanics (WCCM) which 10th edition will be
held in the city of Sao Paulo on 8-13 July 2013. Some 2500
participants are expected to attend the WCCM2012.

These reunions play an important role towards increasing the
cohesion of the IACM community, as well as being a forum for
technical discussions fostering the advances in the different
scientific fields.and creating opportunities for RTD projects in
different areas of engineering and applied sciences, with the
participation of multidisciplinary groups from different countries.

The IACM community has therefore many opportunities for
influencing the development.of the global economy. It is
now more important than ever that we take good advantage
of them.
Eugenio Onate
Editor of IACM Expressions
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Figure 1:
Aluminum foam sample with
and without silicone filler

Figure 2:
XFEM discretization of
the aluminum foam with

silicone filler
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Multi-scale XFEM

in Hannover

The eXtended Finite Element Method
(XFEM) — a substantial generaliza-
tion of FEM within the concept of parti-
tion of unity methods (PUM) using fixed,
usually regular meshes — has long
proven to be an excellent tool to simulate
cracks. Due to its success the XFEM
was also applied to problems with het-
erogenities, to fluid-structure interac-
tions, cutting simulations and other
applications. Interesting new applications
are in the area of multi-scale methods. A
major demand is understand microstruc-
tural effects leading to damage. For this
one has to model and to compute the
initiation of microvoids, their coalescence
and nucleation with the appearance of
microcracks. In the path of a growing

XFEM for static crack propagation
and heterogeneities

The XFEM is a tool to simulate cracks,
heterogeneities and complex microstruc-
tures in two and three dimensions. In
addition to its main advantage, the fact
that cracks and heterogeneities can be
modeled independent of the mesh, the
basic concept of the XFEM does not
have limitations regarding small or finite
deformations or arbitrary material mod-
els. Usually only the displacement field
is enriched with additional degrees of
freedom associated with so-called en-
richment functions

Ty Tlonr

macrocrack new microcracks can evolve 4, — Z Ni | w; + Hay + Z q fibjr

due to changing material response
caused by a progressing macrocrack.
These problems can be modeled by a
multi-scale XFEM.

I=1 j=1

(1)

with N1 being the standard shape
functions, H is the modified Heaviside
function, fiare crack tip enrichment
functions andr, @r and b;rare the
corresponding nodal unknowns. The en-
richment functions are chosen according
to the in general non-smooth properties
the displacement field is supposed to
show in the subdomain where the en-
richment functions have an effect (figure
4). This way arbitrary discontinuities as
well as special displacement fields, lead-
ing to specific strain and stress fields

T

Figure 3:
Cut into the microstructure and von Mises stress distribution
under vertical compression



containing e.g. singularities of a certain
magnitude and order, can be repre-
sented. In linear elastic fracture me-
chanics the analytic asymptotic solution
for the stress field including the singular-
ity at the crack tip in 2D or the crack front
in 3D can be approximated accurately by
means of a specific set of basis functions
with which the analytic solution of the
near tip field can be built exactly. This
classical approach was published in the
first XFEM paper [1]. However, as will
be pointed out later, equilibrated enrich-
ment functions (according to the re-
quested fracture modes) lead to more
accurate solutions especially in the crack
tip elements (figure 11). In case of more
complex material models within the frac-
ture process zone like elasto-plasticity
and non-local damage leading to physi-
cally more correct non-singular stress
fields, an adequate modification of the
enrichment functions concerning the
order of the singularity is sufficient to
obtain very good approximations with
coarse meshes that do not impose a
stress singularity. Similar modifications
of the enrichment functions can be
applied for cohesive crack models.

In case of material and structural hetero-
geneities enrichment functions reflecting
the kinks in the displacement field are
used. Thus complex microstructures
such as foams including filler materials
(figures 1 to 3) can easily be modeled
with regular meshes containing only
nicely shaped elements without the need
for advanced three dimensional meshing
algorithms. Also here, all classical mate-
rial models including finite deformation
theory can be applied without even
changing the enrichment functions.

One flaw of the standard XFEM however
is the fact that in elements connected

to enriched nodes and non-enriched
nodes (so-called blending elements) the
partition of unity is not fulfilled. In these
elements, despite the completeness of
the finite element approximation space
built by the standard shape functions,
spurious jumps in the displacement field
can occur that have a significantly bad
influence on the convergence and error
of the calculated XFEM solution. One
possible and simple remedy to that
problem is the application of a ramp
function blending out the enrichment
functions towards the non-enriched
domains [2]. (figure 4) This technique
has been extended to three dimensions
in Hannover [3].

Figure 4:

=
<
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Ramp function and enrichment pattern for the corrected XFEM

(@)

Multiscale coupling of crack initiation
and propagation

In general, crack propagation is strongly
influenced by microstructural behavior.
Microcracks and microheterogeneities
lead to complex microstructural stress
fields resulting in crack amplification or
crack shielding as well as in complex
crack propagation paths. These
mechanisms are important to consider
in many industrial applications, mainly

if more complex and modern materials
are involved. The first important goal

is the prediction of crack nucleation

with the formation of one or several
microcracks at an appropriate micro
scale. The second goal is the simulation
of the propagation and the determination
of fracture patterns in macroscopic
structures and engineering parts. Since
crack propagation mechanisms are
intrinsically connected to the material
microstructure on a much finer scale,
scale transition methods need to be
applied to accurately capture microstruc-
tural behavior within a macrostructural
computation. Especially for crack initia-
tion and propagation analyses homoge-
nization techniques based on the
representative volume element concept
cannot successfully be applied because

(b)

Figure 5:

(a) Stress distribution
within a coarse scale mesh
and cut through the fine
scale domain of a specimen
with one macrocrack and
two microcracks under
uniaxial tension;

(b) Deformed fine scale
domain showing crack
shielding effects

3 |iacm expressions 30/11



Figure 6:

Stress distribution in the
deformed coarse scale mesh
and the fine scale domain

Figure 7:

Stress distribution

in the deformed fine scale
mesh before and after
adaptive mesh refinement

"?r Thonr 41

Th.f
I=1 k=1

crack propagation always leads to local-
ization and thus to an indeterminable
size of the representative volume ele-
ment. In other words, the representative
volume element automatically loses its
representativeness. As long as cracks
do not propagate however, homogeniza-
tion techniques are applicable.

In case of crack propagation, multiscale
techniques capable of handling localiza-
tion phenomena need to be employed.
One of these techniques is the multi-
scale projection method [4]. This
method represents a direct mapping of
the microstructural stress field onto the
coarse scale mesh as well as a projec-
tion of the coarse scale displacement
field onto the boundary of the chosen
fine scale domain (figure 5). The weak
form of the coarse scale problem

[B

: o df2?

f—" (4 — pity) 492" — /-’{-";':;tmlf?!!”

0o
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(2)

=1 k=1

in which only coarse scale features are
considered explicitly, contains the
stresses of the fine scale solution. Here,
s denotes the nodal value of the test
function. The superscript 0 indicates the
coarse scale. All other quantities are ac-
cording to standard notation in finite ele-
ment literature. The fine scale problem

Py, T +1

[Bi,,r s ar(e)) A

- /-‘.ﬂ;.'éi {-fh - pﬁi} Q' | =0
0 (3)

is solved independently of the coarse
scale problem. Here all fine scale fea-
tures as well as coarse scale features
are considered explicitly. On the bound-
ary of the fine scale domain pure dis-
placement boundary conditions are
prescribed. These displacements come
from the coarse scale solution. This
method was developed for the two di-
mensional case by Loehnert & Be-
lytschko [4] and extended to three
dimensions by the XFEM research group
in Hannover [5,6]. It has proven useful,
accurate and efficient, especially if mi-
crostructural features need to be consid-
ered that are some orders of magnitude
smaller than the typical coarse scale
characteristics. In three dimensions the
multiscale projection method enables the
prediction of microcrack / macrocrack
interaction where single scale computa-
tions would either not be feasible or
computationally very expensive and
potentially inaccurate.

Gradient smoothing and residual
error estimation with adaptivity

Due to the fact that the complexity of the
problems that can be solved using the
XFEM increases, it is desirable to esti-
mate the errors. These stem from the
numerical approximation as well as from
model assumptions. Recently different
types of error estimators have been
developed for XFEM simulation. In Han-
nover we extend the commonly known
error estimation techniques to the multi-
scale projection method such that the
strongly coupled discretization errors on
all scales can be controlled and optimally
decreased by means of mesh adapta-
tion. Since efficiency becomes even
more important, these methods are de-
veloped for three dimensional problems.
Recovery based error estimators follow-
ing the works of Zienkiewicz and Zhu as



well as goal oriented error estimation
techniques for quantities of interest such
as the energy release rate are devel-
oped. Figure 6 shows the @y stress
distribution of a mixed mode multiple
crack in the deformed coarse scale and
in the fine scale domain with several
microcracks. In figure 7 the original as
well as the refined fine scale mesh is
displayed. One can clearly see that the
adaptive mesh refinement significantly
improves the accuracy of the solution.
Within the multi-scale projection method
the influence of the model error turns out
to be of great importance. The choice of
the fine scale domain shape and size
significantly changes the quality of the
result as well as the required numerical
effort. It is important to choose the fine
scale domain such that the fine scale
features, strongly influencing the near
tip field of a propagating macrocrack, are
taken into account appropriately. The
fine scale domain should be selected
such that the fluctuations on the bound-
ary of the fine scale are negligible and
have almost no effect on the near tip
stress field of the macrocrack.

Residual error estimation analysis

The basic step of error controlled adap-
tivity is to assess the accuracy of the
finite element solution & of a problem
at hand. Computable upper bounds on
discretization errors 1 — ., are typically
measured in the energy norm. The dif-
ferent types of a posteriori error estima-
tors are already available for XFEM
[7,8,9]. These are gradient-smoothing-
based and residual-based explicit / im-
plicit estimators. Thus, the following
global error estimates can be con-
structed for both methods as

|u b 'H.;,HQ é Er( Z rf;}-i, )i s f-.irj
$1-EP (4)

where stress recovery based estimators
are given in the complementary energy.
Here, Cis a global interpolation constant.
Depending on the error estimation
method, the local indicator i, is calcu-
lated either explicitly from %4 and the
given data of the problem yielding a strict
upper bound according to Babuska,
Rheinboldt and Miller, or implicitly, by
solving auxiliary local boundary value
problems, usually with equilibrated
residua via improved boundary tractions,
yielding constant-free and approximated
upper bounds.

In engineering practice it is frequently
more interesting to estimate the error not
in the global energy norm, but in some
(local) quantities (linear and nonlinear
functionals), such as e.g. the von Mises
stress in a critical zone, the J-integral
as a fracture criterion or the mean
value of the solution on a local support.
So-called goal-oriented error estimates
for quantities of interest have been de-
veloped that estimate the errorin a
functiona (u) using duality technique.
Estimates of this type are based on
energy-norm estimates of the primal
problem

|Q(u—up)| = |a"(w—twp,2— zi']l, here a®* =a
< Z |ae (u — up, z — 2")| (5)
L¢3
< Ju-uplelz - zulo (6)

for 4 and the dual problem for =

Thus any of the error estimators from (4)
can be used to obtain the bounds for the
right-hand side in (6) or (5), where only
(6) yields a strict upper bound.

An example of implementation of the
different error estimation techniques for
the J-integral as a quantity of interest
and their comparison is illustrated by
figures 8 — 10. Here uniform mesh
refinement is implemented. In particular
the mechanical system depicted in
figure 8 is investigated and a sketch of
the corresponding XFEM solution is
shown. Figure 9 illustrates the associ-
ated dual problem and its XFEM dis-
cretization. It has to be noted that the
choice of the XFEM branch functions
for the dual solution is not self-evident
and a regularity study is required.
Finally, in figure 10 the convergence of
the error for the J-integral is plotted that
is obtained for different types of error
estimators. Figure 10b shows also the
effectivity indices of these estimators.

Due to the product of the lengths of

the primal and dual error vectors in the
energy norm in (6) (according to the
Cauchy-Schwartz inequality) the actual
error of @}(u}is usually highly over-
estimated. The implicit error estimator
designated as “residual 2” is calculated
with the estimator (6). Therefore, a
modification of equation (6) as equation
(5), designated as “residual 17, is also
implemented by adding the nominal
values of the local bilinear forms yielding

“ These ... are of
importance for the
validation of
damage and
failure processes
of high tech
materials due to
different loading
histories and ...
new products with
a minimum of
material and
system testing. ’

b

5 |iacm expressions 30/11



Htt Ittt At [

PR L Ty,

PR I IR OO R Y
(a) (b)

Figure 8:

(a) Structural system: domain with a crack (in red),
loading conditions (tractions are prescribed on the
upper and lower parts) and zero-displacement bound-
ary condition (on the right edge);

(b) deformed mesh

—

(@) (b)

Figure 9:

(a) loading of the dual problem: tractions are applied
on the part of each crack face;

(b) displacement of the dual XFEM solution

10K 1 T HHMKEY (1] ([Tl HIEET] L
Numtr o0 Nuynlser

(a) (b)

Figure 10:

(a) Three types of error estimators for the J-integral
as the quantity of interest: averaging, implicit
(residual 1) and explicit (residual 2) ;

(b) effectivity of the corresponding estimators

iacm expressions 30/11| 6

much less overestimation and thus very
good effectivity indices (figure 10), but
of course no strict upper bound which,
however, holds for all known examples.

Justification and verification of a pos-
teriori error estimation techniques in
the XFEM context

The above error estimators are well
established and elaborated for the
classical finite element analysis. They
have been well understood and justified.
An extension of these approaches for
XFEM, with its different enrichment
schemes and various types of enrich-
ment functions, however, is not straight-
forward and encounters several
mathematical difficulties to overcome.

In order to obtain the simplest Babushka-
Rheinboldt type error estimate for
XFEM we construct in [8] a specific
quasi-interpolation operator that
accounts for singularities and discon-
tinuities and yields optimal local inter-
polation error estimates not only for
typical function spaces but also for
more “exotic” ones. Construction of

an implicit error estimator for XFEM
requires elaborated equilibration proce-
dures on the elements Q,; that contain
crack tip singularities, jumps across

the crack or kinks across material
interfaces. Furthermore, recovery-based
techniques and associated error
estimators for XFEM require the proof
of the guaranteed upper bound property.

The error estimation analysis for the
XFEM also offers the following improve-
ment. As already mentioned, using
specific sets of singular enrichment
functions fulfilling the equilibrium
conditions in the crack tip element,
improves the explicit error estimator
herein by some orders of magnitude.
(figure 11).

Future trends and challenges

The main goals of XFEM remain the
prediction of crack nucleation, the
development of microcracks, their
growth, coalescence and interaction
with macrocracks. These effects can
only be solved accurately and efficiently
by applying multi-scale techniques as
well as error controlled adaptive strate-
gies. The methods need to be extended
to capture three dimensional fracture
processes in heterogeneous and inelas-
tic media. An important task is the
development of a model error estimator



Local indivators LT

that ‘a priori’ determines the appropriate
shape and size of a fine scale domain
where the incorporation of detailed
microstructural information is essential.
In combination with the existing dis-
cretization error control reliable predic-
tions will be possible for microstructural
as well as macrostructural behavior of
complex materials.

These methodologies are of importance
for the validation of damage and failure
processes of high tech materials due

to different loading histories and also
for the virtual design of new products
with a minimum of material and system
testing. @

F_Ill'i1.' |||I|il'.|||'-r.-1 '|'._'-|- XD

Figure 11:

The map of local error indicators on the patch of nine elements
including the crack tip element depending on the set of branch
functions used in the XFEM approxinmation:

(a) conventional set of Belytschko and Black,

(b) analytical solutions fulfilling the “equilibrium condition®.

A local error (already magnified) on the crack tip element is found
to be large in (a)-case and significantly reduced in (b)-case.
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Figure 1:

The Chinese Tianhe
Computer
http://www.nscc-tj.gov.cn/en/

he development of supercomputers has

made astonishing progress in USA,
Japan, Europe, in recent years in China,
and other nations. Many petascale com-
puters are now in operation, contributing ef-
fectively to the faster development in
science and technology in various areas.
The current top performer is the Japanese
K Computer with 8 PFLOPS. Such a fast
pace of development continues. There are
already plans, at least in USA, Japan and
China, and possibly in other countries, to
build the next generation of exascale com-
puters with 10" floating-point calculations
per second (FLOPS), which is 1000 times
faster than the current petascale comput-
ers! The US plan is to have an exascale
computer in operation by 2018, China aims
to have one in about 10 years, and Japan
may have one even earlier. It is certainly
hopeful that we will have many exascale
computers in the first half of 21st-century
accessible to mass.

Tl B
[ n

_] The need for exascale computers is
| obvious, judging from the increas-

w= iNg complexity of the problems we

| are facing and the higher and

#M| higher demand for more accurate

and faster solutions in various

research and application areas.

The questions to us in the computa-

Figure 2:

The Japanese K
Computer
(fujitsu.com)

tional mechanics community would
be whether we are ready to run our codes
efficiently and making the fullest possible
use of future exascale computers. To
better prepare ourselves for this exciting
and not-so-far foreseeable future, the
author has been thinking about the related
issues that we may need to bear in mind
when working on the development of future
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computational methods for exascale com-
puters. This article shares with our readers
some of the preliminary thoughts that may
be quite “speculative”.

While it is still being designed, some of the
overall major features of the feature exas-
cale computers are predictable at least to a
certain degree, from a user point of view.
To develop new and reliable computers
with 1000 times faster than the current
supercomputers, simple accumulative
advancement will not work from at least a
sustainability point of view, many existing
advanced computer technology has been
innovatively incorporated, and some drastic
transformative changes have to be made
as well.

Heterogeneous architecture with
massive cores and accelerators
The current supercomputers are essentially
built with multiple nodes of CPUs with multi-
ple cores. Such architecture is difficulty to
scale up by 1000 times, and has to be
changed for the simple reason of energy
consumption in running the computers. We
know clearly that, in any current supercom-
puter centers with patascale platforms, the
electricity bill is already a huge burden for
sustainable operations. If we would have
to scale the bill up to 1000s or even 100s
times, these centers will have no chance
at all to continue their service, despite the
support from the governments, assuming
that they can afford to purchase such
computers. Itis estimated that for 1000
times improvement on clock speed, we
may only allow less than 10 times increase
in power consumption and ideally no
increase in power consumption, which is
indeed a huge challenge, and the ways to
get this done cannot be many. The
constraints on power consumption is an
"essential boundary condition" and is,
unfortunately, not negotiable

One of the possible ways to build exascale
computers is to use massive GPU (graph-
ics processing unit) accelerators. This has
already been done in the once No.1 for a
short period of time and current No.2
Tianhe Supercomputer built in China,
where over 7000 Nvidia Tesla M2050
general purpose GPUs are used. This
can not only reduce significantly energy



consumption in running, but also generate
much less heat and hence save substantial
electricity for cooling. In addition, reliable
GPU pipelines can be produced cheaply
and in massive quantities, thanks to the ad-
vancement made in graphic displays in the
gaming industry driven by mass consumers
of game players. Exascale computers can
be built by properly adding billions of GPU
pipelines into a multi-node and multi-core
architecture.

Another possibility may be using a massive
number of very low energy-consuming
processors (both CPUs and GPUs) the
ones that we are using in hand-held
devices. In the past, we scientists and
engineers, as the major consumers of
supercomputers (small in number but
extremely high in performance), have paid
less attention on issues related to electricity
consumption when using computers.

Since the supercomputers are either run

by government funded organizations or big
companies, there were no burning issues

in keeping it going. Our attention has been
focused more on how to get our scientific
problems solved efficiently, using more and
more powerful computers. When we need
exascale computers, the issue of energy
consumption has to be dealt with properly
first. On the other hand, the development of
hand-held devices were largely driven by
mass consumers (huge in number but much
less need in computing power), and each of
them has been extremely sensitive to the
energy consumption (or battery life) of these
devices. Hence these types of devices
have been forced to be designed with
special considerations on minimizing energy
consumptions. Handphones are becoming
more and more powerful without increase
the power consumption. This kind of tech-
nology developed in designing and mass-
producing processors for the hand-held
devices is likely to be applied to the design
of exascale computers, in order to over-
come the bottleneck issue of energy
consumption.

Therefore, it is most likely that future exas-
cale computers will be built using “low per-
formance”, very low-energy-consuming,
low-cost, and highly-reliable processors.
With huge numbers (hundreds of millions) of
such processors, one can achieve quantum
leaps in computing power in a practically
sustainable manner. Exascale computers
with massive processors and/or GPU accel-
erators to be built into the current supercom-
puter architecture will possess a highly
heterogeneous architecture: multi-nodes,
massive-core, and massive-accelerators.

Flops will be free, memory

will be more expensive
Using massive number of low-energy-
consuming, less powerful but reliable
processors and accelerators, the FLOPS
may be made practically free in exascale
computers. However, the memory will still
be very expensive. In an exascale com-
puter with multi-nodes, massive-core, and
massive-accelerators, the memory structure
is likely to have a multilayer hierarchy and is
distributed. The total memory per node may
be still the same, but the memory per core
and per accelerator will be very limited.

The cost for moving data around

It is found in computer science that moving
data around consumes substantial energy
and will significantly affect overall operation
speed, especially when moving data
between chips (across nodes, cores,
processors, accelerators, etc.). We need
fundamental changes in ways of moving
data to overcome this problem (for example
optical means), which can be quite a
distance future. Until that happens, it is
not a good idea to move the data too much
between the chips during the computation
in an exascale computer.

Desired features for future computa-
tional methods/algorithms

- Extremely high parallelism

Because the future exascale computers

will have multi-nodes, massive-core, and
massive-accelerators, the total number of
processors can be in the order of billions,
our future computational methods/algo-
rithms have to be extremely highly paral-
lelized at platform level, node level, as well
as accelerator level with good balances and
scalability. Otherwise, one will not have the
benefit of exascale speed. It is possible that
the number of total processors can be even
much more than the number of elements in,
for example, an FEM model. Therefore, the
size of an FEM model will be much less a
problem, provided we can fully and effec-
tively tap the resources of all the proces-
sors. Numerical models and algorithms
that can be easily parallelized with superior
salability are of great advantageous, even

if one has to sacrifice operation counts

and some losses of accuracy (that are
assessable, controllable or recoverable).

In addition, algorithms that are resilient to
errors are of advantageous. This means
that we may have to discard many of the
operation-counts-minimized algorithms
(developed essentially for serial computers)
that do not scale well. It is expected that
effective parallelism can be much more
challenging to develop, due to the
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heterogeneous architecture of exascale
computers, and the scalability with billions
of processors will be one of the bottleneck
issues. In other words, to take the fullest
advantageous of exascale computers, we,
as users, will have a significant role to play,
in addition to innovative techniques in hard-
ware architectures and at system software
level for the exascale computers.

- Minimal data communication

The heterogeneous architecture of the future
exascale computers shall have even strong
impact on memory structures. This requires
much more careful and effective strategy on
data layout. Since moving data among chips
are very expensive compared to operations,
consideration in data management will be
more important than tricks on reducing
operation counts. One may even use “free”
FLOPS to re-compute the data instead of
get those from the memory in another chip.
This kind of simple ideas would be minimiz-
ing data movements between chips, and
improve overall performance. Note also
that the difficulty of data management is
compounded by the parallelism. Out-of-box
strategies may be needed in order to fully
tap the resources of exascale computers,
realizing the theoretical clock speed.

- Simplicity

Because of the heterogeneous architecture
of the future exascale computer, the future
computational methods/algorithms need to
be implemented in multi-levels or hierarchi-
cal. This means that the numerical models
should be as simple as possible for easy
management of data layout and flow of the
executions. Ideally, it is the most effective,
if the bulk operations can be broken down
(with minimum overhead) and executed at
the GPU pipeline level with minimum “talk-
ing” to others. This means that when the
computer hardware gets more complicated,
the numerical models, on the other hand,
need to be drastically simplified.

- Locality

For the same reason of minimizing the data
movement, the operations have to be per-
formed at local levels as much as possible,
and communications between the cores,
processes and GPUs must be minimized.
Thus, algorithms with high local-operation
per-memory will be advantageous.

Summary

If the above analysis is valid, our future
numerical model should be; 1) as simple

as possible; 2) highly parallelizable;

3) highest locality (discrete values at local
nodes or particles or elements should have
very compact supports). On the other hand,
the size (number of nodes or particles) of the
model is less of a concern. An exascale

computer can have much more
processors/pipelines than the total number
of the elements of a numerical model!

The matter is, how to fully and effectively
tap all the available resources, which in turn
presents tremendous opportunities for us

to developed fast or even real-time computa-
tional methods and models. It is becoming
more and more essential that our computa-
tional methods need to be tailored toward
the hardware architecture of exascale
computers. The conventional ways of
developing computational methods will
have to change, if we would like to make
the fullest use of exascale computers.

It is the author’s expectation that a model
using huge number of the simplest 3-node
triangular (or 4-node tetrahedral) elements
can be one of the best choices for numerical
models, at least for solid structural mechan-
ics problems. It has the essential gradients
of highest locality, and simplest formulation.
It is true that the number of elements will

be more than other types of element for the
same number of nodes a model. However,
the large number will no-longer be a
concern for exascale computers. The

lower accuracy and overly-stiff behavior

of triangular elements can also be largely
well-resolved using carefully designed local
operations, such as the gradient smoothing
operations used in the so-called Smoothed
Finite Element Methods (S-FEM). Since
local operations can be made practically
free, it makes good sense to make the
simplest model to deliver the best possible
accurate solution. We may also need to
advance the theory for creating future
numerical methods. Instead of using the
standard weak formulations we may want

to look at other type of formulations, such

as the G space theory and weakened weak
(W2) formulations that work well with
triangular types of elements and offers a lot
more freedom in formulating various types
of numerical models. In addition, by using
sufficient number of triangular types of ele-
ments the complex geometry of the problem
domain can also be modeled very accurately
to meet the need for engineering design
purposes. Algorithms of contacts, breakage,
and many other types of nonlinearity can be
deal with in triangular types of elements in
much simpler manner compared to other
types of elements. Most importantly, gener-
ated of triangular types of meshes and mesh
refinement can be performed automatically
without much human intervention, leading to
an ideal full automation in computational
modeling and simulation: a dream of many
since a long time ago. @
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Figure 1:
1.0 kg of potatoes, 1.000 kg of gold and 1.00000 kg of plutonium.
Same weight?

in your Numerical Results?

Introduction: accuracy

and accuracy control
Any quantity that can be measured or
computed is possibly affected by an
error. The accuracy is the condition
characterizing the error committed in this
measurement or computation. This is
obvious for daily life quantities like
weights: we don’t need the same accu-
racy in measuring 1 kg of potatoes and
for the same quantity of gold or enriched
uranium to be used as nuclear fuel.
In practice, the accuracy is translated
into significant digits: we say, for
instance, 1.0 kg of potatoes, 1.000 kg
(or 1,000 mg) of gold and 1.00000 kg
(or 1,000.00 mg) of plutonium. In this
example, two significant digits may be
sufficient for potatoes; four are enough
for gold; six significant digits are
required for plutonium.

The number of correct significant digits
(also denoted as significant figures) is
directly related with the relative error of
the quantity. The relative error (defined
as the absolute error divided by the
quantity itself), typically expressed as
a percentage, is the meaningful value
describing accuracy because it does
not depend of the units of measure.

If the relative error is below 50%, then
the quantity has at least one correct
significant digit, if it is below 5%, you
can trust two digits, if it is below 0.5%,
three digits... In short, you can trust d
digits if your relative error is below

500 x 10() %.

The number of significant digits is an
important issue, both for measurements
and computations. Here, we concen-
trate in discussing some general ideas
on the accuracy of the numerical solu-
tions in the context of Computational
Mechanics. In other words, we focus in
reviewing the tools allowing assessing
the number of digits you may trust from
your numerical results.

The famous case of the sinking of the
Sleipner A offshore platform (Norway,
August 1991) is a real motivation for the
need of controlling the numerical errors.
The design of a tricell device joining the
cylindrical floaters was based on a
numerical result that underestimated the
shear stresses by 47%. This design
flaw, causing the disaster, was due to
using a too coarse mesh in the Finite
Element analysis, without any a posteri-
ori assessment of the numerical quality
of the solution. In general, we are
extremely sensitive to the accuracy

of the numerical results when it comes
to “Critical Modeling” (when a wrong
decision taken from a deficient model
may have dramatic consequences).
However, also common practice in
Computational Mechanics requires
accuracy control.

Verification and validation

We identify three conceptual steps in the
overall process of numerical modeling
and simulation. First, the real system

to be modeled is transformed into a
conceptual model (approximation of
geometry, simplification of loads and
boundary restrictions...). Second, by
using the laws of physics, a mathemati-
cal model is defined (the equations to
be solved with their boundary condi-
tions) such that the solution (typically

an unknown function) characterizes the
behavior of the system. In the standard
case, this mathematical problem has a
unique solution, but this solution cannot
be found by analytical procedures: some
exact solution to the problem exists,

but it is not computable. Thus, the third
step consists in numerically solving the
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right?

Figure 2:

lllustration of the flux
projection

(a) and enhancement
of displacement

(b) recovery estimates

mathematical model, usually a Boundary
Value Problem defined by a Partial
Differential Equation (PDE). An
approximate solution is obtained that is
necessarily affected by an error. This
error is hopefully expected to be small.

The verification and validation paradigm
consists in assessing the error (or, in
other words, evaluating the quality) of
these steps. The validation part of the
process affects steps one and two,
accounting for the approximations intro-
duced in the conceptual model and the
physical assumptions. Validation is
often summarized as answering the
question “Are we solving the right equa-
tions?” Verification is understood as the
error (or quality) control at step three.
This means answering the question “Are
we solving the equations right?”

Here, we focus in the latter question,
corresponding to verification. Of course,
the answer to this question cannot be
just yes or no. A good answer is the
number of digits you can trust in the
approximate solution. Then, the user
has to decide if this accuracy is suffi-
cient (an then the equation is solved
right) or not. The right answer to this
question is heavily dependent on the
user: you don’t need the same accuracy
for the weighting the food for your recipe
or for dosing the fuel in a nuclear power
plant.

Verification: assessing

numerical errors
Let us assume that the mathematical
problem to be solved is well posed and
that all the input data is known “exactly”.
Then, some numerical method has to be
selected among the list of alternatives:
Finite Elements, Finite Differences,
Finite Volumes, Meshless methods...
All these methods require setting a dis-
cretization: a mesh, a grid or a cloud of
particles. The element size (or distance

—=— Finite cloment approximation
—— Recovered displacement

= imdient of the FE approximation
=== Recovered gradient

iacm expressions 30/11} 12

between nodes or particles) cannot be
infinitely small and therefore the numeri-
cal solution is just an approximation
(likely, a good approximation) of the
exact solution, affected by the so-called
truncation error.

The goal of Verification is assessing
the errors introduced by the numerical
method and, in particular, by the
discretization.

A priori error estimates are, in general,
available for all these methods. That is,
there are mathematical results proving
their converge. That means that the
numerical solution improves as you
increase the number of degrees of free-
dom and that you can even predict how
fast the improvement goes. According
to these theorems, the numerical error
may be as small as desired, provided
that the discretization is fine enough.

In the limit case, with an infinite number
of degrees of freedom, the numerical
solution tends to coincide with the
exact solution.

A priori error estimates describe the
convergence behavior of the method.
However, they are not providing any
clue on which is the actual error associ-
ated with a specific discretization. They
tell you how fast the error decreases but
they cannot be used to check if the error
is already small enough. A posteriori
error estimates using the numerical solu-
tion are required to assess the value (or
some measure) of the actual error.

It is worth noting that the error cannot be
suppressed but only kept under control.
The only paradigm that could be
assumed is to reach prescribed some
accuracy by selecting a proper mesh,
preferably with the lowest computational
effort. This pertains to the concept of
adaptivity and it is discussed below.

A posteriori error estimates

As previously said, an estimate based in
the numerical solution (and therefore
denoted as a posteriori) is required in
order to assess the actual error commit-
ted when using some numerical
scheme. The ideas behind all the tech-
niques rely on the fact that the numerical
solution is not matching the information
at hand. Essentially, the only informa-
tion available is that the unknown solu-
tion is a function with some regularity
requirements (for instance, the first
derivatives are continuous) fulfilling a
differential equation (typically a PDE).



Recovery estimates: improve the
solution enforcing regularity
The first big family of error estimators
is known under different names: flux
recovery estimators, post-processing,
smoothing estimators or ZZ estimators
(after Zienkiewicz and Zhu, the authors
of the paper introducing these tech-
niques). They are based on the fact
that the approximate (Finite Element)
solution is not as regular as the exact
solution is expected to be. Typically, the
derivatives (fluxes or stresses) are not
continuous, as they should be. Thus,
a new solution fulfilling the regularity
requirements is recovered using any
post-processing technique. The error
is then measured as the difference
between the approximated solution and
the recovered solution (which is replac-
ing in the estimate the role that the
exact solution plays in the exact error).
The usual error measure adopted is the
so-called energy norm that is expressed
in terms of fluxes (or stresses). Thus,
the recovered fluxes are sufficient to
compute the estimate.

Residual estimates: check how

well the equation is fulfilled
The definition of residual in dictionary
resident in my laptop is: “a quantity
remaining after other things have been
subtracted or allowed for; a difference
between a value measured in a scientific
experiment and the theoretical or true
value”. In mathematics, the definition is
generalized and stands for the non-veri-
fication of the equation you are wishing
to solve. The exact solution fulfills the
equation, which can be expressed as
making an expression equal to zero, and
the approximated solution does not.
The quantity (different than zero) result-
ing when you introduce the approximate
solution into this expression is precisely
the residual. Obviously, the smaller the
residual is, the closer is the approximate
solution to the exact one.

The residual-type error estimators are
based on the idea of identifying the error
associated with some numerical solution
from its residual. It is worth mentioning
that in the Finite Element context the
residual associated with the strong form
of the problem is split in two parts.
These two parts are seen as two
sources of error. First, we identify the
error in the differential equation itself
that can only be defined (and computed)
in the interior of the elements. Second,
the so-called singular error is associated

p-refinement -

h-refinement /| R R R\ﬁ

with the regularity defaults of the
solution (the flux continuity is not
enforced a the solution contains flux
jumps across the element edges) and
the non-verification of the boundary
conditions. Both sources of error are
integrated in the residual of the weak
form of the equation.

The so-called explicit residual-type
estimates are just post-processes of the
residual, taking into account the two
parts (interior and singular residuals).
Typically, these estimates are approxi-
mations to the error undetermined up to
an unknown constant.

The implicit estimators require solving
the error equation (in which the residual
plays the role of the source term) and
they do provide error bounds. For
instance, you may guarantee that the
estimate obtained with these strategies
is always larger than some measure
(typically an energy norm) of the actual
error.

Goal-oriented error assessment

and pollution
The pioneering error estimates aimed at
assessing the energy norm of the error.
In the 90’s, attention was paid by many
researchers to estimate the pollution
error and, more generally, the error in
arbitrary quantities of interest.

The quantity of interest is described as a
functional output of the solution (some
local average of displacements or
stresses, some integral quantity or
functional restriction...).

| Figure 3:

The mesh is refined by

‘ either increasing the number
of elements of the same type
(h-refinement) or replacing
lower order elements by
high order elements
(p-refinement).

‘ If the linear 3-noded triangle
is a simple soldier, the
degree 19, 210-noded

‘ triangle is a high
ranked general
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| Pollution analysis is important to identify
which are the zones of the domain or the

‘ features of the problem producing errors
elsewhere. This is equivalent to say that
if the goal of the computation is to pro-

‘ duce an accurate approximation of some
quantity localized in one part of the

‘ domain, the mesh has to be refined not
only in the zone of interest but also in the
zones producing pollution. If pollution

‘ exists, local refinement is not sufficient to
guarantee local quality.

‘ The techniques developed to estimate
the error in arbitrary quantities of interest
‘ are based on the following ideas. First,
an auxiliary problem (denoted as dual or
adjoint problem) is introduced in which
the functional output describing the quan-
tity of interest plays the role of the load-
‘ ing (source term). Second, an error rep-
resentation is found such that the error in
the quantity of interest is expressed in
terms of energy products of the errors
corresponding to the original (primal) and
the dual problems. Third, standard ener-
gy norm estimates are applied to both
the primal and the dual problem to obtain
‘ an error estimate for the quantity of inter-
est. Note that if implicit residual estima-
‘ tors yielding upper and lower error
bounds are used, then the estimates for

the error in the quantity of interest are
‘ also guaranteed upper and lower
Figure 4. | bounds. Thus, also for goal-oriented
Examples of goal-oriented ‘ error assessment we need using the
h-adapted meshes. | classical energy norm error estimates.
Note that refinement is
carried out in the zones ‘ Adaptivity: send the troops
requiring higher resolution, where they are more efficient
both in the sources of | Estimating the error makes sense if, in
pollution and where the ‘ the case that the prescribed accuracy
quantity of interest | is not reached, there is a remedy. Of

is localized | course, the straightforward solution is

to recompute with a
4| finer mesh. The idea
~ -+ of adaptivity is to opti-
[ mally refine the mesh

in view of the error distribution. In other
words, the computational resources
(degrees of freedom) have to be located
in the most efficient zones. As previously
mentioned, the idea is to increase the
resolution of the mesh in the zones of
interest but also in zones where pollution
is generated.

In this battle against numerical error, the
effectives are the degrees of freedom.
The strategy depends on the information
provided by the error estimate. The
troops must attack the targets producing
the best results. Note that the final goal
is not suppressing the enemy, but just
keeping it under control, as it should be
also in real wars.

There are three main strategies in mesh
refinement for finite elements. The first
one consists in increasing the number of
elements and keeping the element type.
This is denoted as h-adaptivity (because
h denotes the characteristic element
size). The h-refinement strategy can be
implemented either by subdividing the
previous mesh or building a new mesh
from scratch. In some sense, this is
equivalent to send more soldiers to the
battle, preferably to the zones of the bat-
tlefield where they have more impact.

The second alternative is denoted as
p-adaptivity (p denotes the degree of the
polynomial interpolation in the element)
and consists in replacing low order
elements by higher order ones (linear

by quadratic, cubic...). Following our
martial metaphor, this results in
replacing soldiers by higher rank
officers. In figure 3, if the 3-noded linear
element is replaced by the 210-noded
element of degree 10, the high-ranked
general replaces the soldier.

In these two strategies, local refining is
performed either decreasing h or increas-
ing p. The first is more robust and the
second converges much faster to resolve
complex singularities. The combined h-p
refinement is also a common practice in

z=zx computational mechanics.

! Athird alternative is r-adaptivity (r stand-
L1 ing for relocation) in which the number of
1 degrees of freedom and the mesh topol-
i1 ogy are kept constant. The nodes are

.+ thus relocated to produce a concentra-
1! tion of degrees of freedom where they
{21 can be more effective. This means just
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| moving troops without providing any

additional supply.



Particular applications in which error

control and adaptivity is a must
As discussed above, controlling the
accuracy of the solution must be a
common practice in Computational
Mechanics. The end user has to know
how many digits he/she can trust in the
numerical answer.

Moreover, there are specific applications
and strategies in the Computational
Mechanics landscape in which error
control and adaptivity are especially
important. Three of these particular
applications or modeling options are:
Optimization, Stochastic Models and
Reduced Order Models.

In the context of Optimization, the
numerical problem has to be solved a
large number of times during the iterative

function must be somehow guaranteed at
the minimum computational cost.

The same applies for Stochastic Models,
where the problem has to be solved for a
number of random samples, again with
slight variations.

Both in Optimization and Stochastic
Models, the Reduced Order Model para-
digm is becoming very popular. There is
a recent intensive use of methodologies
like “Reduced Basis Method”, “Proper
Orthogonal Decomposition” (POD) or
“Proper Generalized Decomposition”
(PGD). All these methods allow drastical-
ly reducing the number of degrees of
freedom of the problem to solve by using
information provided by the solutions of
similar problems. Nevertheless, the
dramatic decrease in the complexity of

procedure, with slight variations corre-
sponding to the different values of the
design variables. Moreover, the goal of
the computation is to obtain the objective
function to be minimized. This is obvious-
ly a perfect framework for goal-oriented
error assessment and adaptivity: the
accuracy of the evaluation of the objective

the problem requires a strict control of
the accuracy of the solution provided.
The error assessment techniques have
already been particularized to this
context, but there is a clear need of
further research to develop more tools
and more efficient, and this is certainly
the waytogo. @

References: Books

[1]
[2]
[3]
[4]
[5]
[6]

Ainsworth, M. and Oden, J.T. (2000) A posteriori error estimation in finite element analysis. Pure and Applied
Mathematics (New York), Wiley-Interscience [John Wiley & Sons], Chichester.

Babuska, I. and Strouboulis, T. (2001) The finite element method and its reliability. Numerical Mathematics
and Scienific Computation, The Clarendon Press Oxford University Press, New York.

Bangerth, W. and Rannacher, R. (2003) Adaptive finite element methods for differential equations.

Lectures in Mathematics ETH Zurich, Birkhauser Verlag, Basel.

Ladeveze, P. and Pelle, J.P. (2005) Mastering calculations in linear and nonlinear mechanics. Mechanical
Engineering Series. Translated from the 2001 French original by Theofanis Strouboulis. Springer-Verlag, New York.
Ramm, E., Rank, E., Rannacher, R. et al. (2002) Error-Controlled Adaptive Finite Elements in Solid
Mechanics (ed. E. Stein), Wiley, Chichester.

Verfurth, R. (1996) A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques,
Teubner Verlag and John Wiley, Stuttgart.

References: Papers

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
9]

Zienkiewicz, O.C. and Zhu, J.Z. (1987) A simple error estimator and adaptive procedure for practical
engineering analysis. Int. J. Numer. Methods Eng., 24, 337-357.

Zienkiewicz, O.C. and Zhu, J.Z. (1992) The superconvergent patch recovery(SPR) and adaptive finite
element refinement. Comput. Methods Appl. Mech. Eng., 101, 207-224.

Wiberg, N.E., Li, X.D. and Abdulwahab, F. (1996) Adaptive finite element procedures in elasticity and
plasticity. Eng. Comput., 12(2), 120-141.

Huerta, A., Rodriguez-Ferran, A., Diez, P. and Sarrate, J., Adaptive finite element strategies based on

error assessment, International Journal for Numerical Methods in Engineering, Vol. 46:10, 1803 - 1818, 1999
Diez, P. and Huerta, A., A unified approach to remeshing strategies for finite element h-adaptivity,
Computer Methods in Applied Mechanics & Engineering, Vol. 176:1-4, 215 - 229, 1999

Diez, Pand Calderén, G.,, Remeshing criteria and proper error representations for goal oriented
h-adaptivity, Computer Methods in Applied Mechanics and Engineering, 196 719-733 (2007)

Cottereau, R., Diez, P. and Huerta, A., Strict Error Bounds for Linear Solid Mechanics Problems using

a Subdomain-Based Flux-Free Method, Computational Mechanics, 44 (4) 533-547 (2009)

Ammar, A., Chinesta, F., Diez, P. and Huerta, A., An error estimator for separated representations of highly
multidimensional models, Computer Methods in Applied Mechanics and Engineering, 199 (25-28) 1872-1880 (2010)
M. Paraschivoiu, J. Peraire, and A. T. Patera, A posteriori finite element bounds for linear-functional outputs
of elliptic partial differential equations, Comput. Methods Appl. Mech. Engrg., 150 289-312 (1997)

15 |iacm expressions 30/11



[

fOR
WITHE ' TO G£OPHUSI(S
2fIDIC

palerise Diurran,

964118,
hard cover
t Price).

Introduction, 2. Ordinary Differential Equations,

‘erence Approximations for One-Dimensional Transport,
One-Dimensional Transport, 5. Conservation Laws and Finite-Volume
. Series-Expansion Methods, 7. Semi-Lagrangian Methods,

ly Insignificant Fast Waves, 9. Nonreflecting Boundary Conditions,

al Miscellany, References, Index.

second edition and a major revision of Numerical Methods for Wave
Geophysical Fluid Dynamics (from 1999) by the same author. | liked the
and | like this second edition even more. The change of title conveys the
2 scope of the book has been broadened significantly. As the author states
ce, this book is designed to serve graduate students and researchers
eophysical Fluid Dynamics (GFD) while also providi